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ABSTRACT

Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the

Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by

analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple

nudging technique toward observations. Using the real-timemultivariateMJO (RMM) index as a predictand,

it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation

coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between

target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus

24 days).Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence

from different initial phases. TheMJO prediction skill is also shown to be about 29 days during the Dynamics

of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/

CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill,

extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving

current MJO prediction.

1. Introduction

As the dominant intraseasonal mode over the tropics,

the Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1972) exerts large impacts on global

weather and climate variations [see review by Zhang

(2013)]. For example, the MJO exhibits a substantial

modulation of the genesis and movement of tropical

cyclones (e.g., Maloney and Hartmann 2000; Mo 2000;

Camargo et al. 2009; Vitart 2009; Jiang et al. 2012;

Murakami et al. 2015, manuscript submitted to J. Cli-

mate). El Niño–Southern Oscillation (ENSO) proper-

ties, such as the onset, growth rate, and amplitude, are

also found to be strongly influenced by the MJO

(Kessler and Kleeman 2000; Zhang and Gottschalck

2002; Lau 2005; Kug et al. 2008). The MJO also plays a
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crucial role in regulating the eastern Pacific intra-

seasonal oscillation (Maloney and Hartmann 2000;

Rydbeck et al. 2013), the West African monsoon

(Matthews 2004; Alaka and Maloney 2012), and the

North Atlantic Oscillation (NAO) (Cassou 2008).

Through teleconnections, the impacts of MJO can be

expanded to the whole globe (e.g., Donald et al. 2006;

Moon et al. 2013).

A realisticMJO simulation remains as one of themost

challenging issues for current climate models. In com-

parison to observations, many current models fail to

simulate basic characteristics of the MJO by typically

showing weak amplitude, slow propagation speed (or

even no propagation) and long period, small ratio be-

tween the eastward and westward propagation signal,

and the absence of a spectrum peak of 30–60 days (Lin

et al. 2006; Kim et al. 2009; Hung et al. 2013; Jiang et al.

2015). Recently, many efforts have been made to im-

prove our understanding of the fundamental physics

related to the MJO, in particular its evolution and

propagation. It has been well accepted that the lower-

tropospheric moistening prior to the arrival of the in-

tense convection plays an essential role in its eastward

propagation (Kemball-Cook and Weare 2001; Benedict

and Randall 2007). However, the mechanisms re-

sponsible for the lower-tropospheric moistening ahead

of convection remain inconclusive and many different

processes have been proposed, including the frictional

moisture convergence associated with wave dynamics

(e.g., Wang and Li 1994; Hsu and Li 2012), the in-

teraction between the shallow convection and boundary

layer circulation (e.g., Li et al. 2009), stratiform heating

(e.g., Fu and Wang 2009), and the moisture mode de-

stabilized by surface flux and cloud–radiative feedbacks

(e.g., Sobel and Maloney 2012). By comparing 27

models that participated in the Working Group on Nu-

merical Experimentation (WGNE) MJO Task Force

and Global Energy and Water Cycle Exchanges Project

(GEWEX) Atmospheric System Study program, Jiang

et al. (2015) illustrated that two factors show significant

correlations with MJO performance across different

models: the low-level relative humidity difference be-

tween the top 5% and the bottom 10% of rain events

and the seasonal mean gross moist stability.

The effective prediction of the MJO can bridge the

gap between deterministic weather forecasts and prob-

abilistic climate forecasts to extend the predictive skill

of a wide range of phenomena from the synoptic scale

to a climate time scale (Waliser 2005; Brunet et al. 2010;

Vitart et al. 2012). The statistical models have been

suggested to have skill up to 2 weeks forMJO prediction

(e.g., Lo and Hendon 2000; Jiang et al. 2008; Kang and

Kim 2010). MJO prediction has also been quantitatively

evaluated in several dynamical models by using the

same criterion (Lin et al. 2008; Vitart and Molteni 2010;

Rashid et al. 2011; Wang et al. 2014; Kim et al. 2014).

For instance, the Australian Bureau of Meteorology

coupled ocean–atmosphere seasonal prediction system

(POAMA) showed a 21-day lead forecast skill for the

MJO (Rashid et al. 2011). The National Centers for

Environmental Prediction (NCEP) Climate Forecast

System (CFS) was shown to have useful forecast skill out

to 10–15 days in version 1 (CFSv1; Seo et al. 2010) and to

possess marked improvement out to 20–21 days in ver-

sion 2 (CFSv2; Wang et al. 2014; Kim et al. 2014). The

European Centre for Medium-Range Weather Fore-

casts (ECMWF) forecast system [Variable Resolution

Ensemble Prediction System (VarEPS)] also exhibits

prediction skill of 23–27 days for the MJO (Vitart and

Molteni 2010; Kim et al. 2014).

While the basic performance in MJO simulations has

been reported in previous studies for several versions of

the Geophysical Fluid Dynamics Laboratory (GFDL)

coupled models (e.g., Lin et al. 2006; Benedict et al.

2013), the MJO prediction skill in these models has not

been examined yet. The primary goal of this study is to

explore and quantitatively assess the MJO prediction

skill in a new version of GFDL coupled model with a

focus on the boreal winter season (November–April)

when the MJO is relatively strong.

The paper is organized as follows. Section 2 in-

troduces the model, experiments, and the verification

methodology. Section 3 describes the overall MJO

prediction skill and the skill dependence on MJO am-

plitude and phase. The predictions for MJO amplitude

and propagation are documented in section 4. Section 5

presents the MJO prediction skill during the Dynamics

of the MJO/Cooperative Indian Ocean Experiment on

Intraseasonal Variability in Year 2011 (DYNAMO/

CINDY) period. Finally, a summary and discussion are

given in section 6.

2. Model, experiments, and methodology

a. Model

In this study, we use a new version of the GFDL

coupled model. This model is based on the Forecast-

Oriented Low Ocean Resolution (FLOR) version of

GFDL model (Vecchi et al. 2014), but with a different

convection scheme that is referred to as a double-plume

convection (DPC) scheme (M. Zhao et al. 2015, un-

published manuscript). We use the same resolution as

FLOR. The horizontal resolution for the ocean model

is about 18 and it has 50 vertical levels (10-m resolution

in the upper 100m). The atmospheric model has an
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approximately 50-km horizontal resolution and 32 ver-

tical levels. Thismodel has been used to demonstrate the

beyond weather time scale prediction for specific

typhoon/hurricane cases (Xiang et al. 2014).

A realistic simulation of MJO is usually regarded as a

necessary (but not sufficient) condition for a skillful

MJO prediction. Since it is a widely used metric for

characterizing observed MJO evolution and measuring

the intrinsic MJO modes, we examined the combined

EOF developed by Wheeler and Hendon (2004, here-

afterWH04). Figure 1 depicts the spatial structure of the

combined EOF modes of the anomalous outgoing

longwave radiation (OLR), 850-hPa zonal winds

(U850), and 200-hPa zonal winds (U200) averaged be-

tween 158S and 158N. For observations, the first EOF

(EOF1) mode features an enhanced convection over

the eastern Indian Ocean and Maritime Continent

(MC), while the second EOF (EOF2) mode displays

the intensified convection over the western Pacific to-

gether with the suppressed convection over the Indian

Ocean (Fig. 1). The associated circulation (U850 and

U200) shows an out-of-phase pattern for the upper and

lower troposphere zonal winds, representing a dy-

namically coherent baroclinic structure. The lead–lag

correlation of these two PCs reveals the maximum

correlation with EOF1 leading EOF2 for about 10 days.

A fully coupled control run (20 yr) was also made to

evaluate the performance of the coupled model in

simulating the intrinsic MJO mode. The model gener-

ally captures the convection–circulation coupled pat-

terns for both EOF modes as well as their explained

variances (Figs. 1c,d). Compared with EOF1 mode, the

EOF2 mode shows relatively larger bias in the model.

For example, the maximum convection tends to occur

too far eastward and U200 exhibits a broad peak

without a clear maximum center (Fig. 1d). A more

detailed documentation of the importance of the DPC

scheme in improving MJO simulation will be provided

in M. Zhao et al. (2015, unpublished manuscript).

b. Hindcast experiments

Initial conditions and the boundary forcing [e.g., sea

surface temperature (SST)] are equally important for a

skillful MJO prediction (Waliser 2006). In this study,

initial conditions for atmosphere and ocean were ob-

tained through a nudging technique toward the obser-

vations. The atmospheric nudging fields include winds,

temperature, geopotential height, and surface pressure

using the NCEP Global Forecast System (GFS) analysis

data (6-hourly interval). The SST is nudged to the

FIG. 1. The (a) first and (b) second EOFmodes of combined fields of OLR (black), U850 (red), and U200 (green).

Here we used the NOAA OLR data and NCEP GFS analysis wind data (2002–13). (c),(d) As in (a),(b), but for

model’s free coupled run (20 yr). The percentage value in parentheses above each panel is the variance explained by

each mode.
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National Oceanic and Atmospheric Administration

(NOAA) optimum interpolation 1/48 daily SST analysis,

version 2 (OISSTv2; Reynolds et al. 2007). The nudging

time scale is 6 h for atmospheric variables and 1 day

for SST.

To obtain the initial conditions, we first spin up the

coupled system with the observed atmospheric and

SST nudging for 11 years to allow the ocean (partic-

ularly the upper ocean) to adjust. Starting from the

above initial conditions, we made another round of

nudging from January 2003 to December 2013 to

create initial conditions for hindcast experiments.

Since this study aims to explore the MJO prediction

skill during boreal winter season, hindcasts were car-

ried out every 5 days for each month from November

to April. An ensemble is generated by having initial

conditions from successively 4 h apart, namely, at 0000,

0400, 0800, 1200, 1600, and 2000 UTC, forming a daily

six-member ensemble. In total we made 396 (11 yr 3
6 months 3 6 cases) forecast cases during the 11 years

and each has six members so that the total number of

forecast sets is 2376. For each run, we integrated the

model for 50 days.

c. Methodology

Following WH04, the observational anomalous

fields (OLR, U850, and U200) are obtained by apply-

ing the following two steps: 1) removing the time mean

and first 3 harmonics of the climatological annual cycle

from the observational data (2002–13) and 2) sub-

tracting the 120-day mean of the previous 120 days in

order to remove the influence of the interannual and

even longer time-scale variability. Following Neena

et al. (2014), the hindcast fields anomalies are obtained

by removing the model hindcast climatology as a

function of starting date of hindcast and lead day. The

hindcast climatology includes the signal from both

model climatology and also the initial shock andmodel

drift. After this, we also apply step 2 above to remove

the interannual variability for hindcast anomalies

(appending the corresponding observed anomaly fields

before the forecast).

The above observational and predicted anomalous

fields are then projected on to the two observational

EOF modes (Figs. 1a,b) to obtain the MJO principal

component (PC) indices, also named the real-time

multivariate MJO (RMM) indices (WH04). Both the

observed and hindcast RMM indices are then normal-

ized by the standard deviation of the observed RMM

indices. In this study, we took the NOAA daily mean

interpolated OLR data (Liebmann and Smith 1996) and

NCEP GFS analysis data (including U850 and U200) as

observations.

Using the aboveRMMindices as the predictands, the so-

called bivariate anomaly correlation coefficient (ACC) and

bivariate RMSEwere adopted here to measure its forecast

skill (Lin et al. 2008; Rashid et al. 2011):

ACC(t)5

�
N

t51

[a1(t)b1(t, t)1 a2(t)b2(t, t)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

t51

[a21(t)1 a22(t)]

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

t51

[b21(t, t)1 b22(t, t)]

s

and

RMSE(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

t51

[ja1(t)2b1(t,t)j21 ja2(t)2b2(t,t)j2]
s

.

Here a1(t) and a2(t) are the verification RMM1 and

RMM2 at time t; b1(t, t) and b2(t, t) are the corre-

sponding forecasts at time t for a lead time of t days; and

N is the number of forecasts. It is regarded that the skill

is useful when the bivariate ACC is greater than 0.5 at

which the RMSE increases to the level of prediction

with climatology (Lin et al. 2008; Rashid et al. 2011;

Wang et al. 2014). More details of the evaluation

method can be found in Lin et al. (2008) and Rashid

et al. (2011).

FIG. 2. MJO prediction skill in boreal winter. (a) The bivariate

ACC for individual member (gray) and six-member ensemble

mean (red) as a function of forecast lead days. (b) RMSE of in-

dividual member (gray) and ensemble mean (red), and the en-

semble spread relative to the six-member ensemble mean (blue).
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To examine the propagation speed error in prediction,

the phase angle error is estimated between the observed

and the predicted RMM indices following Rashid et al.

(2011):

ERRphs(t)5
1

N
�
N

t51

tan21

�
a1(t)b2(t, t)2 a2(t)b1(t, t)

a1(t)b1(t, t)1 a2(t)b2(t, t)

�
.

The bivariate amplitude is defined as [a21(t)1 a22(t)]
1/2

for observations and for [b21(t)1 b22(t)]
1/2 model fore-

casts. The total observed and predictedMJO cases (396)

are separated into initially strong and weak cases based

on the observedMJO amplitude. AnMJO is defined as a

strong case when its amplitude is larger than 1.0 (246

cases; 62% of total observation cases) and a weak case

for those equal to or less than 1.0 (150 cases; 38%of total

observation cases) during the period of 2003–13.

3. Overall MJO prediction skill

In this section, emphasis is placed on the overall pre-

diction skill and the dependence of the skill on MJO

amplitude and phase.

a. Overall MJO prediction skill

Figure 2 shows the bivariate ACC and RMSE of MJO

prediction during boreal winter. The ACC curve for

individual members (gray lines in Fig. 2a) drops gradu-

ally during the first 10 days (ACC. 0.78) and then drops

rapidly on the subsequent 10–50 days. The single-

member mean skill is about 22 days with the criterion

ofACC exceeding 0.5. As expected, theACC for the six-

member ensemble mean (red line in Fig. 2a) is superior

to that from individual members, in particular for lead

time beyond 15 days, and the ACC curve shows a very

linear character, with the skill reaching out to 27 days

(also Table 1). Utilization of the six-member ensemble

mean has increased the skill by about 5 days compared

to the single-member skill. Meanwhile, the RMSE ex-

hibits rapid growth during the first 15 days followed by a

period of slower error growth (Fig. 2b). The effect of the

ensemble mean becomes prominent after around

15 days, supported by the strong contrast between in-

dividual members and the ensemblemean for bothACC

and RMSE. Note that only the six-member ensemble

mean results are presented hereinafter.

Using the same criterion of ACC in excess of 0.5, the

prediction skills for RMM1 and RMM2 are estimated to

be 29 and 24 days (not shown), respectively, suggesting

that the EOF1 is more predictable than the EOF2 mode

in this model forecast system. This may be linked to the

model’s deficiency in simulating EOF2 mode as the

EOF2 mode shows relatively larger bias with respect to

its spatial pattern thanEOF1 as shown in Fig. 1. Following

Kim et al. (2014), we also investigated the prediction skill

for individual variables. As expected, the prediction skill

for OLR is lower (22 days) than the other two circulation

variables U850 (25 days) and U200 (24 days). One reason

is that OLR is tightly linked to convection that is more

difficult to predict than circulations.

As mentioned in section 2, the hindcast anomalies are

obtained by subtracting the model hindcast climatology

that calls for large sample of experiments, so that this

methodology may not be applied to the case with a

relatively small sample of forecasts. To show the ro-

bustness of the results, we use other approaches to iso-

late MJO from model hindcasts. First, we apply an

identical methodology as that used to obtain the ob-

servational anomalies. Results show that the ACC curve

dropsmuch faster during the first 15 days than the results

TABLE 1. Summary of the MJO prediction skill (days) in this version of the GFDL model.

All Initial strong Initial weak Target strong Target weak Initial weak and target strong DYNAMO Predictability

27 29 24 32 7 27 29 42

FIG. 3. The bivariate ACC for all cases using different methodol-

ogies to obtain anomalous fields for hindcast experiments. The black

lines are results removing the model forecast climatology and the

previous 120-day mean; the red one is for results removing the time

mean and first 3 harmonics from observed annual cycle, and also the

previous 120-day mean. The blue line is similar to red one but ap-

plying a mean bias correction.

1 JULY 2015 X IANG ET AL . 5355



by removing the hindcast climatology, but the prediction

skill still reaches 26 days (Fig. 3). To understand what

causes the sudden drop of ACC within 15 days, an addi-

tional step is performed: computing the mean of the

anomalies (obtained from the first two steps) for all hind-

casts (regardless of the calendar) and then subtracting it

from each day’s anomalous fields for each hindcast exper-

iment. This step can be regarded as a bias correction as the

model predictions tend to drift toward the model’s mean

climate with the increased forecast lead time. The mean

bias correction dramatically improves the ACC especially

during the first 15 days as themodel initial shock andmean

state drift are most pronounced at this time period (not

shown). The skill reaches 27 days, implying the robust-

ness of our results by using diverse methodologies.

b. Skill dependence on MJO amplitude

Many previous studies have demonstrated that theMJO

prediction skill depends on the initial amplitude of the

MJO, with higher prediction skill for initially strong cases

than initially weak cases (Lin et al. 2008; Kang and Kim

2010; Rashid et al. 2011;Wang et al. 2014; Kim et al. 2014).

Our results show that the ACC displays a modest increase

along with the enhancement of the initial amplitude

(Fig. 4a). The initially strong cases show a systematically

higherACC than the initially weak cases from the first day

of forecast, while theACCdecrease is relatively slower for

initially weak cases during the first 18 days (Fig. 4b). The

initially strong (weak) cases have skill of 29 (24) days

(Fig. 4b and Table 1). We speculate that the relatively

lower prediction skill for initially weak cases is partly as-

cribable to the lack of signal in the initial condition.

The above results imply that the model has high pre-

diction skill starting from an existing MJO. By contrast,

prediction of the MJO genesis tends to be more chal-

lenging but may be more meaningful to represent the

model’s capability in MJO prediction. Figure 4c shows the

ACC as a function of target amplitude and forecast lag

days. Note that here the cases include both the initially

strong and weak cases. Here the day 0 represents the oc-

currence time for the target MJO events and the negative

number is the lag days before the MJO occurrence. When

the target MJO amplitude is less than 0.5, the model al-

most has no skill. A higher skill is achieved along with the

enhancement of the target amplitude. The skill reaches

about 17 days when the target amplitude is between 0.75

and 1.5, and the skill dramatically jumps to more than

34 days when the target amplitude larger than 1.5. On

average, the target strong (amplitude larger than 1) cases

have skill of 32 days while the target weak (amplitude less

FIG. 4. (a) The bivariate ACC as a function of initial MJO amplitude (x axis) and forecast lead days (y axis). The

contour interval is 0.1 and the red contour represents the correlation coefficient of 0.5. (b) The bivariate ACC for all

cases (black), initially strong cases (MJOamplitude greater than 1; red), and initially weak cases (MJOamplitude less

than 1; blue). (c),(d) As in (a),(b), but for the target MJO amplitude as a function of forecast lag days. The black line

in (d) represents the ACC for initial weak but target strong cases.
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than 1) cases only have skill of 7 days (Fig. 4d andTable 1).

Compared with the target strong cases, the poorer skill for

target weak cases is attributed to the smaller ACC at

forecast lag day 21 and also the more rapid decrease of

ACC during the first 15 days. The onset or initiation pre-

diction for primaryMJO events may be roughly estimated

by exploring the prediction skill for initially weak but

target strong cases, and the skill reaches 27 days (Fig. 4d).

FIG. 5. The bivariate ACC as a function of different initial phases (x axis) and forecast lead days (y axis) for (a) all

cases and (b) initially strong cases. (c),(d) As in (a),(b), but for the skill as a function of target phase (x axis) and

forecast lag days (y axis). The contour interval is 0.1 and the red contours represent the correlation coefficient of 0.5.

FIG. 6. The RMM composite phase–space diagram for the first 25 days from observations (red) and the model

predictions (blue) initialized at different phases. The results are for the composite of strong cases only. The dots

reflect every 5 days from the forecast starting date (day 1; filled squares).
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c. Skill dependence on MJO phase

The MJO prediction skill may also rely on the MJO

phase when the forecasts are initialized. Here, each

phase has approximately 50 cases and each strong phase

has about 30 cases. As shown in Fig. 5a, the skill contrast

among different initial phases is relatively small, with

phases 3, 4, and 5 above the mean skill and phases 1 and

8 slightly less than themean. The contrast becomesmore

prominent for initially strong cases: the skill is beyond

40 days for hindcasts initialized at phases 2 and 3, and

about 20–30 days for the other phases (Fig. 5b).

TheACC skill shows its dependence on the target phase

and the forecast lag days (Fig. 5c). It is clear that the target

phases 3, 4, 7, and 8 have slightly higher skill (about

30 days) than the other four phases (phases 1, 2, 5, and 6;

about 21 days). The results are also evident for target

strong cases (Fig. 5d). The skill contrast is consistent with

the result that RMM1 is more predictable than RMM2, as

RMM1 (RMM2) represents a typical convection–

circulation pattern for phases 3 and 4 (5 and 6). Note

that phases 7 and 8 (1 and 2) are the corresponding

negative counterparts for phases 3 and 4 (5 and 6). This can

be traced back to the bias in the EOF2 mode that shows a

broader wind pattern than observation (Fig. 1d).

Some models exhibited the so-called MC prediction

barrier with the predicted MJO signal having difficulty

propagating across the MC (Vitart and Molteni 2010;

Lin et al. 2008; Fu et al. 2011). This version of theGFDL

model achieves higher skill for hindcasts initialized at

phases 2 and 3 than the mean prediction skill, indicating

that the model may not suffer theMC prediction barrier

limitation. In agreement with several previous studies

(e.g., Neena et al. 2014; Kim et al. 2014), these results

suggest that the MC prediction barrier could be highly

model dependent.

4. Evaluation of MJO amplitude and propagation
prediction

To depict the characteristics of propagation and

amplitude, a phase–space diagram is plotted for com-

parison between the observed and predicted MJO

FIG. 7. (a) Evolution of MJO amplitude as a function of lead days for the initially strong cases for observations

(black) andmodel prediction (red). (b) The observed (black bars) and predicted (red bars)MJO amplitude averaged

over the first 25 days for the cases initialized at differentMJOphases (x axis). (c) Prediction ofMJOphase angle error

(8) as a function of lead time for the initially strong cases. (d) The predicted MJO phase error averaged over the first

25 days for the cases initialized at different MJO phases (x axis).
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indices with respect to different phases (Fig. 6). This

diagram represents the composite results of the time

evolution of RMM indices starting with an initially

strong MJO. The phase diagram is plotted for a 25-day

target period with solid dots representing the phase lo-

cations every 5 days. The amplitude is generally decay-

ing with time for both observations and hindcast results.

The predicted MJO amplitude is in qualitative agree-

ment but weaker than observations.

The amplitude and propagation are further assessed

in Fig. 7. As a common bias for current model forecast

systems (e.g., Rashid et al. 2011; Wang et al. 2014; Kim

et al. 2014; Neena et al. 2014), the predicted MJO

amplitude is underestimated with the mean amplitude

underestimated by about 12.5% averaged over the

first 25 days. The amplitude error on day 30 is similar

to that on day 1, indicating that large portion of am-

plitude error may be attributed to the initial bias. For

individual phase, the underestimated amplitude dur-

ing the first 25 days is most evident in phases 4, 5, and 6

(Fig. 7b). The phase angle error is used to estimate the

propagation speed bias. The mean phase angle error is

weakly positive during the first 30 days with a mean

value of 4.28 for the first 25 days (Fig. 7c). For the

mean of the first 25 days, the phase angle error varies

among different phases with negative error for phases

1, 7, and 8 but positive error for the other phases

(Fig. 7d).

FIG. 8. Composite anomalies of the OLR (shading; Wm22) and U850 [contour interval of 0.5m s21 starting at 10.5 (solid) and

20.5m s21 (dashed)] averaged over 158S–158N initiated at eight different phases. The x axis is for longitude and the y axis is for forecast

lead days. The panels in the first and third rows are for observations and in the second and fourth rows are for model predictions. Here the

results are based on initially strong MJO events only.
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Figure 8 displays the composite results of OLR and

U850 anomalies averaged over 158S–158N for initially

strong cases. Overall, the model realistically predicts the

amplitude and eastward propagation of MJO for each

phase as well as the lead–lag relationship between con-

vection and circulation. For phases 3, 4, 7, and 8, an

opposite phase of MJO convection anomalies develops

over the Indian Ocean after about 20 days, likely trig-

gered by the primaryMJO (Matthews 2008). It gives us a

clue that this model may have some capability in pre-

dicting the occurrence of successive MJOs. After

crossing the MC, the predicted MJO propagation speed

tends to become faster than that in the IndianOcean and

MC, resulting in a broad peak of wind pattern in the

EOF2 mode (Fig. 1d). Another interesting feature is

found for the asymmetry of the observed convection–

circulation anomalies. For example, starting from phase

2, the wet anomalies accompanied by westerly wind

exhibits a strong and well-organized coupled system

propagating eastward starting from the Indian Ocean.

For the counterpart phase 6, the OLR and U850 are

significantly weaker and the eastward propagation is less

organized. This asymmetry is also well predicted in

the model.

5. MJO prediction during the DYNAMO/CINDY
period

In this section, special attention is put on theDYNAMO/

CINDY field campaign period (September 2011–March

FIG. 9. The longitude–time diagram of the composite anomalies of precipitation (mmday21) averaged over 108S–108N initiated on the first

day of each month from October to December 2011, (a)–(c) for observations and (d)–(f) for model predictions.
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2012) with large amounts of in situ observations

(Yoneyama et al. 2013; Zhang et al. 2013; Sobel et al.

2014; Wang et al. 2015). Given the relatively small

forecast sample, the anomalous fields are calculated by

removing the time mean, the first 3 harmonics of the

observational annual cycle, and the mean of all hindcast

anomalies during this period. During these seven

months, this model shows a prediction skill of 29 days for

all cases and 33 days for initially strong cases (not

shown). The skill is slightly higher than the mean skill

during boreal winter, which is likely due to more oc-

currences of MJO events (5) during this period than

average (3–4 events). The results are encouraging when

compared to othermodel results: Fu et al. (2013) showed

that CFSv2 model and University of Hawaii coupled

model have prediction skill of 25 and 28 days, re-

spectively, during the same DYNAMO/CINDY period.

We also show three MJO events from mid-October to

December 2011 (Fig. 9). The prediction starts the first

day of October, November, and December 2011 with an

initial phase of 6, 4, and 4, respectively. In general, the

model accurately predicts the subsequent eastward

propagation of the precipitation signal from the MC to

the central Pacific. The geneses of three major MJO

events are also well predicted with a lead time of about

half a month in spite of the underestimated precipitation

magnitude. The eastward propagation speed tends to be

slower than observations for the first (MJO 1) and sec-

ondMJO (MJO 2) and the simulated propagation of the

MJO event (MJO 3) is faster (and closer to the obser-

vations) than MJO 1 and MJO 2. The precipitation is

notably widespread in the model.

6. Summary and discussion

a. Summary

The importance of accurate MJO forecasts has been

emphasized as it is a critical component for extended-

range forecasts (2–4 weeks) (e.g., Waliser 2006). The

GFDL model has been widely used in climate study

whereas the MJO prediction skill has not been evalu-

ated. This study aims to examine the MJO prediction

skill during boreal winter for a new version of theGFDL

coupled model. With a simple nudging technique for

both atmospheric variables and SST, it is demonstrated

that the model possesses a prediction skill out to 27 days

by examining 11 years of hindcast experiments from

2003 to 2013 (Table 1). Results also show that the ini-

tially (and target) strong MJO cases achieve higher

prediction skill than the initially (and target) weak cases.

The propagation speed is well predicted in the model,

which is largely responsible for the high ACC during the

time range of 20–40 days. The MJO prediction skill also

shows some sensitivity with respect to the initial and

target phases which may provide useful information for

real-time prediction. The MJO prediction over the

DYNAMO/CINDY period is also assessed and the skill

reaches out to 29 days (Table 1). The results are en-

couraging especially considering that no data assimila-

tion is adopted in this forecast system.

b. Discussion

The model’s potential predictability measures the

upper bound of the MJO prediction skill, and can be

used to quantify the gap between the prediction skill and

predictability. Neena et al. (2014) found that the MJO

predictability estimated by the signal-to-noise ratio us-

ing ensemble-mean hindcasts was around 35–45 days for

most current models. Here we use a different approach

following Rashid et al. (2011) by taking one of the six

members as the ‘‘truth’’ and the skill of the ensemble

mean computed from the other five members is scored

against it. The six time series of bivariate ACC can be

achieved by selecting each member as the truth. Here

strong assumptions are used that both the model and

initial conditions are perfect. Results suggest that the

potential predictability is 42 days for this model (Fig. 10a

and Table 1), indicating that this model has the scope for

further improving its MJO prediction skills by up to

15 days before reaching the upper limit of potential

FIG. 10. (a) Potential predictability for all cases (black), initially

strong cases (red), and initially weak cases (blue) as a function of

forecast lead days. (b) Potential predictability for target strong

(red) and target weak (blue) cases as a function of forecast lag days.
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predictability. The predictability for individual phase is

also studied and results show that the predictability is all

beyond 40 days (not shown). Meanwhile, the pre-

dictability is about 43 and 40 days for initially strong and

weak cases, and 43 and 38 days for target strong and

weak cases, respectively (Fig. 10). This implies that the

target weak cases have the largest gap between the real

prediction skill and potential predictability (31 days).

One simple way to improve the current skill is to enhance

the ensemble spread. The model’s prediction skill largely

relies on the spread for the ensemblemembers,which canbe

estimated by the standard deviation of ensemble members

relative to the ensemble mean (Kim et al. 2014). A perfect

model forecast system requires that the ensemble spread

equals to the error of the ensemblemean (Weisheimer et al.

2011; Kim et al. 2014). Similar to the NCEP CFSv2 and

ECMWF VarEPS models (Kim et al. 2014), the current

model prediction system also bears the same problem with

underdispersive ensemble members (Fig. 2b). In particular,

the model spread is only about 0.1 during the first 5 days,

which is 5 times less than the corresponding RMSE. This

problem is partly related to the simple initialization method

we adopted. Thus, a simple way to improve the current

model prediction is to increase the ensemble spread.

The MJO signal has spatial distribution with its max-

imum over the Indian Ocean–western Pacific sector. To

show how the RMM index prediction is reflected on the

real prediction, we present the spatial maps of the cor-

relation between the observed and predicted 5-day

mean anomalies for all cases using the six-member en-

semble mean results (Fig. 11). Note that the anomalous

fields include not only MJO but also all other intra-

seasonal variability. For lead times of 1–5 days, the

maximum correlation skill for all these three anomalous

fields appears over the subtropics for both land and

ocean. Relatively lower skill over the tropical ocean

FIG. 11. The spatial correlation coefficient between observed and predicted 5-day mean (left) OLR, (center) U850, and (right) U200

anomalies for lead times (top)–(bottom) of 1–5, 11–15, 21–25, and 31–35 days for all cases (only the values above 0.15 are shown at 95%

significance level).
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area is arguably linked to the unrealistic prediction of

convection and clouds over the tropics in the model.

Comparing with OLR prediction, the circulation pre-

diction (U850 and U200) shows a superior prediction

skill. As time goes on, the skill over the subtropics de-

creases rapidly as the intraseasonal predictability source

(MJO) is mainly residing over the tropics, particularly

over the Indian Ocean–western Pacific sector. It is in-

teresting to see that the U850 and OLR prediction is

effective for lead time of 31–35 days over the western-to-

central Pacific, which may facilitate the ENSO pre-

diction. Different from the other two fields, U200 has

the best prediction skill over the northern IndianOcean.

Some skill is also found over the midlatitude for both

U200 and U850, particularly over the Atlantic Ocean,

which is arguably linked to the MJO’s remote forcing

effect on the NAO (Cassou 2008).

In this study, we are only focusing on the boreal winter

season. One important reason is that the RMM indices

may not be sufficient in describing the boreal summer

MJO activities, in particular the northward propagation

component (Lee et al. 2013). A further study is planned

to explore the prediction skill in boreal summer by

employing the indices proposed by Lee et al. (2013) to

assess the boreal summer MJO.
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