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ABSTRACT

Practical predictability of tropical cyclogenesis over the North Atlantic is evaluated in different synoptic

flow regimes using the NCEP Global Ensemble Forecast System (GEFS) reforecasts with forecast lead time

up to two weeks. Synoptic flow regimes are represented by tropical cyclogenesis pathways defined in a pre-

vious study based on the low-level baroclinicity and upper-level forcing of the genesis environmental state,

including nonbaroclinic, low-level baroclinic, trough-induced, weak tropical transition (TT), and strong TT

pathways. It is found that the strong TT and weak TT pathways have lower predictability than the other

pathways, linked to the lower predictability of vertical wind shear and midlevel humidity in the genesis vi-

cinity of a developing TT storm. Further analysis suggests that stronger extratropical influences contribute to

lower genesis predictability. It is also shown that the regional and seasonal variations of the genesis predictive

skill in the GEFS can be largely explained by the relative frequency of occurrence of each pathway and the

predictability differences among pathways. Predictability of tropical cyclogenesis is further discussed using

the concept of the genesis potential index.

1. Introduction

Skillful prediction of tropical cyclones (TCs) is of

significant socioeconomic value because of the po-

tentially hazardous impacts of the storms. Compared

to TC track and intensity forecasts, tropical cyclo-

genesis forecasts have received less attention. Accu-

rate prediction of the genesis time and location,

however, is critical for the extended-range forecasting

of tropical cyclone track and intensity. In particu-

lar, timely and skillful prediction of tropical cyclo-

genesis near the U.S. coast is important for storm

preparedness.

Numerical models are important tools in opera-

tional forecasting (e.g., Elsberry et al. 2009; Halperin

et al. 2013; Li et al. 2016). Previous studies have shown

that the predictive skill of tropical cyclogenesis in

numerical models varies from case to case (Komaromi

and Majumdar 2015). The formation of some storms

can be predicted skillfully more than one week inCorresponding author: Zhuo Wang, zhuowang@illinois.edu
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advance (e.g., Xiang et al. 2015a; Elsberry et al. 2011;

Tsai and Elsberry 2013), while the 48-h forecasts of

other storms, such as Hurricane Fay (Kimberlain 2014)

and Tropical Storm Hanna (Cangialosi 2014) in 2014,

can be a challenge even for the state-of-the-art oper-

ational prediction systems. The predictive skill of an

operational model has substantial variations on the

subseasonal and interannual time scales (Li et al.

2016; Komaromi and Majumdar 2015) and also

varies from basin to basin (Halperin et al. 2016).

Such variations cannot be completely attributed to

changes in a prediction system or the heterogeneity

of observational data assimilated in a model. Instead,

the spatial and temporal variations of predictive skill

often reflect variations in TC predictability: Some

TCs are more predictable than others. Predictability,

the extent to which the future states of a system

may be predicted based on the knowledge of the

current and past states of the system (American

Meteorological Society 2012), depends on the

available observational data and prediction models

and also on the intrinsic dynamic and physical nature

of the phenomenon of interest. A better un-

derstanding of the predictability of tropical cyclo-

genesis may not only help to identify the key

processes involved in TC genesis but may also pro-

vide useful information on the reliability of opera-

tional prediction and thus aid more effective use of

forecast products.

Tropical cyclone formation involves multiscale

interactions among complex physical processes

ranging from the convective scale to the planetary

scale (Gray 1998). It is generally believed that con-

vective processes limit the predictability of tropi-

cal cyclogenesis, while slowly varying, large-scale

processes may serve as important sources of pre-

dictability. For example, the Madden–Julian oscil-

lation (MJO), the dominant mode of intraseasonal

variability in the tropics (Madden and Julian 1972;

Zhang 2005), is a major source of TC predictability

on the subseasonal time scale (National Research

Council 2010). Owing to its quasi-periodic behavior

and strong impacts on TCs, the MJO has been used

as an important predictor in many statistical pre-

diction models for tropical cyclogenesis (e.g., Leroy

and Wheeler 2008; Slade and Maloney 2013). A

numerical model that is skillful in MJO prediction is

often found skillful in subseasonal TC prediction

(Xiang et al. 2015a,b; Barnston et al. 2015). Other

sources of predictability for tropical cyclogenesis

include, but are not limited to, El Niño–Southern
Oscillation (ENSO; e.g., Goldenberg and Shapiro

1996), the Atlantic Meridional Mode (e.g., Kossin

and Vimont 2007), and the Atlantic regional

Hadley circulation (Zhang and Wang 2013), which

all strongly modulate Atlantic TCs on the in-

terannual time scale. Li et al. (2016) showed that the

subseasonal predictive skill of TCs tends to be

higher in El Niño and La Niña years than in the

ENSO-neutral years. Wang et al. (2015) attributed

the skillful seasonal prediction of the Atlantic

basinwide hurricane frequency in a global

atmospheric model (Chen and Lin 2013) to the high

predictability of the Atlantic regional Hadley

circulation.

Moving to shorter temporal scales or smaller spa-

tial scales, a preexisting, cyclonic synoptic distur-

bance is one of the necessary conditions for TC

formation (e.g., Gray 1968). Tropical cyclones can

develop from tropical easterly waves (e.g., Landsea

1993; Dunkerton et al. 2009), equatorial Rossby

waves (Lussier 2010), monsoon troughs or monsoon

gyres (e.g., Wu et al. 2013), disturbances resulting

from the intertropical convergence zone (ITCZ)

breakdown (e.g., Guinn and Schubert 1993; Wang and

Magnusdottir 2005), Rossby wave dispersion from a

preexisting cyclone (e.g., Li and Fu 2006), or subtropical

frontal systems (the so-called tropical transition; Davis

and Bosart 2003, 2004). Synoptic-scale precursor dis-

turbances serve as the incubator for the development

of a TC (e.g., Dunkerton et al. 2009; Montgomery et al.

2010; Wang et al. 2010a,b, 2012) and control the imme-

diate environmental conditions for genesis. Different

types of precursors are characterized by different

synoptic-scale environmental states, and their in-

teractions with an incipient TC vortex may be different.

It is conceivable that tropical cyclogenesis in different

synoptic flow regimes may be associated with different

levels of predictability.

Although Lorenz (1965) demonstrated, more than

50 years ago, that predictability is dependent on flow

regime, predictability of tropical cyclogenesis for

different synoptic flow regimes has not been well

studied. Based on the upper-level forcing and low-

level baroclinicity of the genesis environment,

McTaggart-Cowan et al. (2013) identified five trop-

ical cyclogenesis pathways (or development path-

ways) that represent different synoptic-scale flow

regimes, including nonbaroclinic, low-level baro-

clinic, trough-induced (TI), weak tropical transition,

and strong tropical transition pathways (see

more discussion in section 3). Built upon this

pathway concept, we will test the following hy-

pothesis: tropical cyclogenesis in different synoptic

flow regimes is associated with different levels of

predictability.
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Predictability of tropical cyclogenesis will be exam-

ined in a reforecast dataset. The dataset and pre-

dictability metrics are described in section 2. A brief

review of the genesis pathways is provided in section 3.

Predictability of tropical cyclogenesis is examined in

section 4, followed by a summary and discussion in

section 5.

2. Data and methodology

a. Data

The predictability of tropical cyclogenesis over the

North Atlantic was examined in the Global Ensemble

Forecast System (GEFS) Reforecast, version 2 (GEFS-

R2), during July–October 1985–2012. The GEFS-R2

has 11 ensemble members and was initialized once per

day at 0000 UTC with the Climate Forecast System

Reanalysis (CFSR; Saha et al. 2010) from 1985 to

February 2011 and with the analysis from theGridpoint

Statistical Interpolation analysis system (GSI) after

February 2011 (Hamill et al. 2013). The horizontal

resolution of the model is T254 for first week refor-

ecasts and is reduced to T190 beyond one week. All

variables were coarsened to a 18 3 18-resolution grid

mesh before our analyses.

We focus on the North Atlantic basin. The Geo-

physical Fluid Dynamics Laboratory (GFDL) vortex

tracker (Marchok 2002) was used to track TCs in the

GEFS-R2 (Li et al. 2016). A tropical cyclone was iden-

tified as a warm-core, cyclonic vortex with the 10-m

maximum wind speed exceeding 16.5 m s21 (the wind

speed threshold was adjusted based on the data resolu-

tion;Walsh et al. 2007). To increase the robustness of the

results, short-lived TCs (lifetime less than 72 h) were

excluded in both the observation and the GEFS-R2.

Storms forming poleward of 408N were regarded as ex-

tratropical cyclones and were excluded as well. Tropical

cyclones were tracked in individual ensemble members

and evaluated against the International Best Track Ar-

chive for Climate Stewardship (IBTrACS; Knapp et al.

2010). A hit was defined for a model TC that forms

within6120 h of the observed genesis time and within a

58 radius of the observed TC track,1 while the other

model TCs were categorized as false alarms. Addition-

ally, a miss was flagged when the model fails to produce

a hit for an observed TC, and a nonevent or correct

negative was identified if neither an observed genesis

event nor a predicted one occurs.

b. Metrics

Metrics of predictive skill are used to estimate pre-

dictability in this study. Predictability was often evalu-

ated by error growth rate in early studies (e.g., Lorenz

1965, 1969; Smagorinsky 1969). As ensemble prediction

becomes the common practice in recent decades, en-

semble spread is often used as a metric of predictability,

which indicates the error growth rate or the sensitivity

of a prediction system to initial condition errors. Metrics

of ensemble spread have been employed to evaluate the

predictability of tropical cyclone intensity or track in

some previous studies (Zhang and Tao 2013; McMurdie

and Ancell 2014). An ensemble spread metric, however,

is not readily applicable to tropical cyclogenesis, as the

dichotomy between genesis and nongenesis cannot be

determined using a single variable. A vortex tracker,

such as the one described in section 2a, is often em-

ployed to identify tropical cyclogenesis in a numerical

model by examining multiple variables.

Because the predictive skill of a model is dependent

on the practical predictability of the phenomenon of

interest, model forecasts can be used to estimate prac-

tical predictability under the assumption that higher

predictive skill suggests a higher level of practical pre-

dictability. Using an idealized ensemble prediction sys-

tem, Grimit and Mass (2007) showed that ensemble

spread (ameasure of predictability) is related to forecast

accuracy (measured by predictive skill). More specifi-

cally, the probability of large forecast errors increases

with increasing ensemble spread although the ensemble

spread–error relation cannot be well represented by a

simple linear correlation. Furthermore, practical pre-

dictability is related to model deficiencies, uncertainties

in initial conditions, and intrinsic predictability (Palmer

2006). Since the GEFS-R2 was carried out using a fixed

version of the GEFS and initialized primarily with the

CFSR during the time period of analysis (1985–2012),

different genesis predictive skills reflect the different

levels of intrinsic predictability for different pathways,

with the limitation that some results may be model

dependent.

Several metrics were employed to evaluate the pre-

dictive skill of the GEFS-R2. Hit rate (H), false alarm

rate (F), false alarm ratio (FAR), and critical success

index (CSI) were computed based on the 2 3 2 contin-

gency table as below:

H5
a

a1 c
, (1)

1 The time window is chosen to include early genesis and late

genesis (the predicted genesis time of a storm is too early or too late

compared to the observation; see Halperin et al. 2013; Li et al.

2016). Reducing the time window to 2–3 days reduces the hit rate

but does not qualitatively affect the results on different levels of

predictability associated with different pathways.

JANUARY 2018 WANG ET AL . 363



F5
b

b1d
, (2)

FAR5
b

a1 b
, (3)

CSI5
a

a1 b1 c
, (4)

where a, b, c, and d are the numbers of hits, false alarms,

misses, and correct negatives, respectively. The hit rate, or

the probability of detection, is the proportion of the oc-

currences that are correctly forecast. The false alarm ratio

is the proportion of genesis forecasts that turn out to be

false alarms, and the false alarm rate is the ratio of false

alarms to the total number of nonoccurrences (i.e., b1 d).

The critical success index, also known as the threat score, is

the number of hits divided by the total number of occasions

when the event is forecast and/or observed, which is par-

ticularly useful when the occurrence is substantially less

frequent than the nonoccurrence (Wilks 2006).

Selected environmental variables related to tropical

cyclogenesis in theGEFS-R2 were evaluated against the

CFSR. The CFSR were mapped to a grid mesh of 1.08 3
1.08 resolution in keeping with the GEFS-R2. The pre-

dictive skill of environmental variables was examined by

computing the root-mean-square error (RMSE). RMSE

was first derived for individual ensemble members,

and then the ensemble mean RMSE was taken. A good

agreement was found among ensemble members, and

only the ensemble means are discussed below for

brevity.

3. Tropical cyclogenesis pathways

McTaggart-Cowan et al. (2013) employed two met-

rics to characterize the environmental state (instead of

the precursor vortex) for tropical cyclone develop-

ment, and five tropical cyclogenesis pathways were

categorized based on a linear discriminant analysis

(LDA) of the two metrics, including nonbaroclinic

(NBC), low-level baroclinic (LBC), trough-induced,

weak tropical transition (TT), and strong TT pathways

(Table 1 and Fig. 1). The categorization of the path-

ways is briefly described below, and readers are

referred to McTaggart-Cowan et al. (2013, 2008) for

more details.

The two chosen metrics,Q and Th, are representative

of the synoptic-scale, near-storm environment and are

dynamically significant with respect to tropical cyclo-

genesis theories (McTaggart-Cowan et al. 2008). The Q

metric is defined as the average convergence of the 400–

200-hPa Q vector within 68 of the point of interest. The

Q vector is defined as

Q52
R

sp

0
BBB@

›V
nd

›x
� $

p
T

›V
nd

›y
� $

p
T

1
CCCA , (5)

TABLE 1. Characteristics and frequency of occurrence of different genesis pathways [adapted from Table 2 in McTaggart-Cowan et al.

(2013)]. Also shown are the vertical shear (defined as the magnitude of the zonal wind difference between 200 and 850 hPa) and 700-hPa

RH, which are averaged over a 208 3 208 box centered at the genesis location from the IBTrACS to represent the environmental state.

Pathway Nonbaroclinic Low-level baroclinic Trough induced Weak TT Strong TT

Upper-level forcing Low Low High High High

Low-level baroclinicity Low High Low Medium High

Occurrence (%) 38 12 10 26 14

Vertical shear (m s21) 3.8 4.7 4.2 6.8 11.7

700-hPa RH (%) 67.4 67.3 66.5 63.6 54.0

FIG. 1. Classification of North Atlantic TC pathways in the

metric space. The event dots are color coded according to the latent

trajectory model (LTM) class diagnosed by McTaggart-Cowan

et al. (2008) as indicated in the legend. The same color scheme is

used for the LDA-based background, which represents the domi-

nant pathway in each sector of metric space scaled to white with

decreasing posteriors. When a dot lies on the background of the

same color, the LDA reclassification reproduces the original LTM

result. The centroids of the classes are shown by color-coded

squares in each panel (from McTaggart-Cowan et al. 2013).
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where Vnd denotes nondivergent wind; R is the gas

constant of dry air; p and T are pressure and air tem-

perature, respectively; s is the static stability; and =P

denotes horizontal gradient on a pressure surface. The

Q vector was calculated using the nondivergent wind

component to deal with the high–Rossby number flow in

the tropics and to reduce noise associated with the ir-

rotational wind component. TheQmetric represents the

synoptic-scale forcing for ascent, associated with an

upper-level trough or a tropical upper-tropospheric

trough (TUTT) cell. The second metric, Th, represents

the low-level baroclinicity and is defined as the maxi-

mum difference in 1000–700-hPa thickness between two

semicircles within 108 of the point of interest. Since the

two metrics represent the environmental state and do

not require the presence of a vortex, they can be eval-

uated at each grid point and at each analysis time of a

reanalysis dataset. An LDAwas employed to categorize

five genesis pathways, and the pathway of a TC is de-

termined based on the values of the metrics at the gen-

esis location.

The NBC pathway is characterized by weak upper-

level forcing and weak low-level baroclinicity (Fig. 1 and

Table 1). This pathway is the most frequent genesis

pathway and occurs preferentially over the Atlantic

main development region (MDR; Goldenberg et al.

2001; Fig. 2b). It conforms to the typical tropical cyclo-

genesis scenario associated with a tropical easterly wave

(e.g., Dunkerton et al. 2009).

The LBC pathway mainly occurs off the coast of West

Africa (Fig. 2c), near the Cape Verde Islands (the so-

called Cape Verde storms). It is characterized by weak

upper-level forcing and strong low-level baroclinicity

(Fig. 1 and Table 1). The low-level baroclinicity is

closely related to the African easterly jet and results

from the thermal contrast between the cool maritime

boundary layer in the south and the hot desert air mass

in the north extending from West Africa to the east

Atlantic. There are two groups of waves over West Af-

rica, one to the north of the jet and the other to the

south (referred to as northern and southern waves,

respectively), which have different dynamic and

FIG. 2. Genesis distribution for (a) all analyzedAtlantic tropical cyclones and for (b)–(f) different genesis pathways.

The boxes in (a) represent the different regions defined for the Atlantic basin (see text for more details).
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thermodynamic structures (e.g., Reed et al. 1977;

Pytharoulis and Thorncroft 1999). Because of the pres-

ence of the strong low-level baroclinicity, the LBC

pathway is likely involved with the interaction

between a southern wave and a northern disturbance

(Hankes et al. 2015). As shown in Hankes et al. (2015),

the merger of a southern wave and a norther wave

creates a deeper and stronger wave pouch conducive to

tropical cyclogenesis. It is worth pointing out that this

pathway is still a ‘‘tropical only’’ pathway despite the

low-level baroclinicity.

The trough-induced, weak TT, and strong TT pathways

are all subject to upper-level forcing and are characterized

by weak, moderate, and strong low-level baroclinicity, re-

spectively (Fig. 1 and Table 1). The upper-level forcingmay

be associated with cutoff lows or upper-level troughs

(Bentley et al. 2017), which are often of extratropical origin.

However, it is necessary to note that the presence of the

upper-level forcing does not mean that low-level tropical

disturbances, such as tropical easterly waves, do not play a

role in the formation of a TC (Galarneau et al. 2015). In

some cases, low-level disturbances may play a dominant

role in TC development (see discussion of Tropical Storm

Matthew in section 4d). The trough-induced, weak TT, and

strong TT pathways can thus be regarded as hybrid path-

ways or extratropical pathways, in contrast to the ‘‘tropical

only’’ nature of the NBC and LBC pathways.

The trough-induced pathway is the least frequent

genesis pathway, and the associated developments scatter

over the central andwestAtlantic (Fig. 2d). The weak TT

and strong TT pathways occur more poleward than the

trough-induced pathway, in keeping with the stronger

low-level baroclinicity (Figs. 2e,f). The low-level bar-

oclinicity in the weak TT and strong TT pathwaysmay be

associated with strong sea surface temperature gradient

or a low-level jet. In addition, remnant cold fronts in the

subtropics can enhance low-level temperature and

moisture gradients as well (Davis and Bosart 2004;

Zhang et al. 2017). In other words, theQmetric and the

Thmetric are not completely independent of each other.

4. Evaluation of tropical cyclogenesis predictability

a. Predictability for different pathways

The composite mean hit rate2 for each pathway is

shown in Fig. 3. Bootstrapping was used to test the

significance of the differences from random sampling.

For example, the total number of storms was 339, in-

cluding 129 storms associated with the NBC pathway.

To test the significance for the NBC pathway, 10 000

bootstrap samples were constructed, and each sample

included 129 cases randomly chosen from the 339

storms. The hit rate was then calculated for each sam-

ple. If the hit rate value of the NBC pathway was above

the top 5th percentile or below the bottom 5th per-

centile of the 10 000 bootstrap estimates, the hit rate

was regarded as significantly different from random

sampling. The same test was done for each pathway at

different forecast lead times. As shown in Fig. 3, the

LBC pathway has the highest hit rate among the five

pathways, and the hit rate exceeds the top 5th percen-

tile at all forecast lead times. The strong TT pathway

has the lowest hit rate among the five pathways at all

forecast lead times. The hit rates of strong TT and weak

TT are significantly lower than random sampling from

days 2–3 to days 8–9. The NBC and trough-induced

pathways have similar skill, and neither is significantly

different from random sampling.

The different predictive skills of tropical cyclogenesis

associated with different pathways can partly be attrib-

uted to the different predictive skill of environmental

variables. The RMSEs of vertical wind shear (defined as

the magnitude of the vector wind difference between

200 and 850 hPa) and 700-hPa relative humidity (RH)

were calculated with respect to the CFSR. For each

observed storm in the IBTrACS, RMSE was evaluated

at the observed genesis time over a 208 3 208 grid box,

which is about half wavelength of a typical tropical

easterly wave. Since the predicted genesis can occur

anywhere within a 58 radius of the observed genesis

FIG. 3. Hit rate as a function of the forecast lead time for dif-

ferent genesis pathways (represented by different colors as shown

in the legend). Closed circles (diamonds) represent hit rate falling

below (above) the bottom (top) 5th percentile of random sampling.

2We did not evaluate the false alarm rate or the false alarm ratio

for different genesis pathways because themodel environmentmay

deviate from reality, and the pathways defined based on the ob-

served environment cannot be simply used to categorize false

alarm storms in the reforecasts.
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location for a ‘‘hit’’ event, we chose a fixed 208 3 208 box
centered at the observed genesis location in the CFSRbut

allowed the center of the 208 3 208 box in theGEFS-R2 to

move within a 108 3 108 domain centered at the observed

genesis location. RMSE was calculated for each possible

location. Given the 18 3 18 resolution, this yields 100

values of RMSE for a given genesis event. The minimum

RMSE among the 100 values was chosen to represent a

lower bound of the forecast errors. The same calculation

was repeated for all GEFS ensemble members, and the

ensemble mean of the minimum RMSE was taken to

represent the predictive skill of the variable for a genesis

event. The composite mean of the RMSE was then cal-

culated for each genesis pathway. Because of the large

volume of the dataset, only three representative forecast

lead times—5, 10, and 15 days—were examined (Fig. 4).

The RMSE increases sharply from t 5 0 to 5 days for

both vertical wind shear and RH (note that the RMSE is

zero at t5 0). Because of the different error growth rates

for the different pathways, the magnitude of the RMSE,

of both vertical shear and RH, shows the same sequence

at different forecast lead times: strong TT. weak TT.
trough induced . NBC . LBC. A larger RMSE is due

to the larger error growth rate and indicates lower pre-

dictability. The predictive skill or predictability of the

environmental variables is consistent with the genesis

predictive skill for different pathways shown in Fig. 3

except for the relative order of the NBC and trough-

induced pathways. Although the largest RMSE of ver-

tical wind shear for the strong TT pathwaymay be partly

attributed to the strong environmental vertical wind

shear that the pathway is subject to (Table 1), the

magnitude of the environmental RH does not explain

the large RMSE of 700-hPa RH associated with the

strong TT and weak TT pathways (Table 1). Instead, the

TT pathways generally occur at higher latitudes than

the other pathways (Fig. 2), and the large RMSE may

be attributed to the influences of extratropical distur-

bances (see more discussion in section 4b).

We also examined column water vapor and 850-hPa

relative vorticity. The relative magnitude of the RMSE

of column water vapor for the five pathways has the

same sequence as that of 700-hPa RH and vertical wind

shear. The five pathways, however, are not very well

separated in the RMSE of 850-hPa relative vorticity.

This is probably because relative vorticity has very

limited predictability for all pathways. Komaromi and

Majumdar (2014) showed that variables related to

large-scale, slowly evolving phenomena (such as ver-

tical shear and the upper-level velocity potential) are

more predictable that those inherently related to small-

scale, rapidly evolving features (such as the low-level

vorticity and upper-level divergence).

The different hit rates in Fig. 3 suggest different levels

of genesis predictability for different pathways, which,

from high to low, have the following order: LBC .
trough induced . NBC . weak TT . strong TT.

The higher predictability of the LBC pathway than the

NBC pathway may be related to the role of the in-

teraction between northern and southern waves in the

FIG. 4. RMSE of (a) vertical wind shear and (b) 700-hPa RH (see the text for details). Different colors represent

different genesis pathways.
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development of an LBC storm.3 Hankes et al. (2015)

showed that the merger of a northern wave and a

southern wave leads to a stronger and deeper wave

pouch off the coast, which is more conducive to tropical

cyclogenesis. It is possible that the interaction between

two synoptic waves enhances both the likelihood and

predictability of tropical cyclogenesis. In addition, the

interaction of southern and northern disturbances oc-

curs preferentially near the coast in both the observation

and the reforecasts. This geographic preference also

contributes to a higher hit rate by reducing the errors in

predicted genesis locations.

It was a surprise that the hit rate of the NBC pathway is

lower than that of the trough-induced pathway, as the

real-time wave tracking based on global model forecasts

from multiple operational centers in the past several

years (http://www.met.nps.edu/;mtmontgo/storms2008.

html) gave us the impression that TCs originating from

tropical easterly waves in the Atlantic MDR are more

predictable than those forming farther west in the basin.

It is possible that the low hit rate of the NBC pathway is

due to the systematic genesis biases in the GEFS. Li et al.

(2016) found that tropical easterly waves are too strong

and too deep over West Africa in the GEFS reforecasts

compared to the ERA-Interim. As a result, some waves

develop into TCs shortly after moving over ocean. This

leads to a positive bias in tropical cyclogenesis density

function off the coast of West Africa and a negative bias

farther downstream. The negative bias may explain the

relatively low hit rate for the NBC pathway, while the

positive bias near the coast may contribute to the high hit

rate of the LBC pathway.

The strong TT pathway has the lowest predictability,

which can be partly attributed to the high environmental

vertical wind shear associated with the pathway (Davis

and Bosart 2004). Zhang and Tao (2013), using idealized

simulations, showed that environmental vertical shear

affects the predictability of TC formation and intensity.

However, vertical shear does not explain the pre-

dictability differences among the other pathways be-

cause the environmental vertical wind shear, derived

from theCFSR, is similar among the LBC,NBC, trough-

induced, and weak TT pathways (Table 1). On the other

hand, it is instructive to recall that the strong TT and

weak TT pathways, with relatively low predictability, are

of hybrid or extratropical nature as they are associated

with upper-level troughs or cutoff lows originating from

the extratropics. At the short time scale (within the

forecast lead time of 1–2 days), forecast errors grow faster

in the tropics than in the extratropics probably because of

active moist convection and the lack of quasigeostrophic

constraint in the tropics. However, at the longer time

scales, the strong coupling between the atmosphere and

ocean in the tropics limits the error growth (Charney and

Shukla 1981; Palmer 1996), while error growth continues

in the extratropics through baroclinic and barotropic

processes and upscale energy cascade (e.g., Métais et al.
1994; Straus and Paolino 2009). The extratropical atmo-

sphere thus has a large error growth rate and hence lower

predictability than the tropical atmosphere at forecast

lead times beyond 1–2 days [see Fig. 10 in Davis et al.

(2016)], and it is conceivable that TCs developing under

stronger extratropical influences (as the strong TT and

weak TT pathways) are intrinsically less predictable than

those developing in a purely tropical environment at this

time scale.

b. Possible extratropical influences on predictability

In this section, we further address the question

whether stronger extratropical influence necessarily

implies lower genesis predictability (or lower predictive

skill). The Q metric can be used as a proxy for extra-

tropical influences. Although the strong TT, weak TT,

and trough-induced pathways are separated primarily

based on the strength of the low-level baroclinicity (Fig.

5a; also seeMcTaggart-Cowan et al. 2013), Fig. 5b shows

that stronger upper-level forcing occurs most frequently

in the strong TT pathway and least frequently in the

trough-induced pathway, consistent with the co-

dependency of the two metrics mentioned in section 3.

As noted by Zhang et al. (2017), a strong upper-level

potential vorticity feature may induce or enhance the

low-level baroclinicity. Bentley et al. (2017) showed that

the strong TT pathway is often associated with a stron-

ger upper-level disturbance, such as a cutoff low or a

meridional trough. Such upper-level disturbances may

either extend to the lower troposphere and initiate the

low-level cyclonic circulation or interact with low-level

precursor disturbances (Davis and Bosart 2004;

Galarneau et al. 2015).

To examine further the possible impacts of upper-

level disturbances of extratropical origin on tropical

cyclogenesis predictability, we combined the strong TT

andweak TT storms and separated them into the strong-Q

3 Hankes et al. (2015) showed that merger developers, compared

to nonmerger developers, are associated with a stronger heat low

extending fromWest Africa to the east Atlantic (i.e., enhanced low-

level baroclinicity). We also found that 31% of the LBC storms de-

velop out of themerger of a southernwave and a northernwave from

1990 to 2010, while only 7% of NBC storms are merger developers.

Hankes et al. (2015) used a rather stringent definition for the merger

of two disturbances and did not consider stationary or weak vorticity

disturbances north of the jet. It is possible that a large fraction of the

LBC storms were involved with the interaction between a southern

wave and a northern disturbance if a looser definition were used.
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and weak-Q groups by the median of the Q metric. The

two groups had the same sample size of 68. The hit rate

was calculated for each group, and the significance of the

hit rate difference between the two groups was exam-

ined using a permutation test. The permutation test

consists of 10 000 drawings. In each drawing, a group of

68 storms were randomly chosen from the pool of 136

storms, and the remaining storms were treated as an-

other group. The hit rate for each group was calculated,

and the difference in the hit rate between the two groups

was recorded. The 10 000 drawings thus produced 10 000

outcomes of the hit rate difference. The difference in the

hit rate between the strong-Q and weak-Q groups is

regarded significant if it exceeds the top 5th percentile of

the 10 000 drawings. The same test was repeated for all

forecast lead times.

As show in Fig. 6a, the strong-Q group indeed has a

lower hit rate than the weak-Q group, and the differ-

ence is significant at all forecast lead times except at

day 12–13.We repeated the same calculation by defining

two groups after combining the strong TT, weak TT, and

trough-induced pathways (Fig. 6b). The three-pathway

combination has the advantage of a larger sample size

(170), but it should be borne in mind that the trough-

induced pathway differs from the strong TT and weak

TT pathways in many aspects (McTaggart-Cowan et al.

2013). Again, the strong-Q group has a lower hit rate

than the weak-Q group, and the difference is significant

at all forecast lead times. We also examined the strong

TT and weak TT pathways separately. Although a

strong-Q group always has a lower hit rate than a

weak-Q group, the difference does not exceed the

5th-percentile threshold at some forecast lead times

because of the small sample sizes of the pathways (not

shown). Overall, the calculations suggest that stron-

ger extratropical influences imply lower predictability

of tropical cyclogenesis.

c. Geographic and seasonal variations of
predictability

Previous studies have reported the geographic variations

of model forecasting skill for tropical cyclogenesis (e.g.,

Halperin et al. 2013, 2016). In fact, the spatial variations of

the model forecast skill are so large in operational models

that longitude and latitude, despite of their lack of explicit

physical meaning, were selected as two major predictors

in a hybrid prediction scheme to reduce the biases of a

numerical model by Halperin et al. (2017). Figure 7 shows

the hit rate, false alarm rate, false alarm ratio, and critical

success index for four regions over theAtlantic: the eastern

MDR (EMDR), the central and western MDR

(CWMDR), the Gulf of Mexico (Gulf), and the sub-

tropical Atlantic (SubAtl; delineated in Fig. 2a), which are

selected based on the geographic distribution of the

pathways. The hit rates are clearly separated among the

four regions: EMDR . CWMDR . Gulf . SubAtl

FIG. 5. Histograms of the low-level baroclinicity (Th metric) and the upper-level forcing (Q metric) for the TI,

weak TT, and strong TT pathways. Note that these are stacked bar charts in which one bar is stacked above another

and does not go behind other bars.
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(Fig. 7a). The false alarm rate in the EMDR and

CWMDR is much higher than that in the other two

regions (Fig. 7b), and the EMDR hit rate is even larger

than the hit rate of the LBC pathway. This is likely due

to the tropical cyclogenesis biases in the GEFS men-

tioned earlier (Li et al. 2016). However, the higher hit

rate over the EMDR and CWMDR does not occur at

the expense of a larger false alarm ratio. The four re-

gions have a similar false alarm ratio beyond 3 days

(Fig. 7c), or the proportion of forecast events that fail

tomaterialize is about the same in the different regions.

The critical success index shows a sequence similar to

the hit rate, but the EMDR and CWMDR are less well

separated (Fig. 7d).

If evaluated based on the hit rate, tropical cyclogen-

esis over the EMDR is most predictable, followed by the

CWMDR, and tropical cyclogenesis over the sub-

tropical Atlantic region is least predictable. The differ-

ences in the hit rate between different regions can be

explained by the different contributions of the pathways

(Fig. 8a). Over the EMDR, the LBC pathway accounts

for about 70% of tropical cyclogenesis; over the

CWMDR, about 70% of TCs develop via the NBC

pathway. In contrast, weak TT makes the largest con-

tribution over the Gulf (;55%), and strong TT and

weak TT each contribute more than 40% over the sub-

tropical Atlantic. If the hit rate differences between the

regions result from the differences in pathway fre-

quency, then one could make an estimate of the hit rate

for each region based only on the knowledge of the

pathway frequency (Fig. 8a) and the per-pathway hit

rate (Fig. 3): no knowledge of the region itself is re-

quired. The estimated hit rate (in solid lines) and the

actual hit rate for each region (in dashed lines) are

shown in Fig. 8c. To the extent that these curves are

similar (including ordering), the relative frequency of

the pathways explains regional differences in pre-

dictability. In particular, the relatively low predictive

skill of tropical cyclogenesis over the subtropical

Atlantic can be attributed to strong extratropical

influences.

The seasonal variations of the pathway occurrences

help to explain the differences in genesis predictive skill

or predictability between the peak season and the early/

late seasons. Because the tropical transition pathways

make a larger relative contribution in June–July (JJ) and

October–November (ON) than in August–September

(AS; Fig. 8b), the hit rate and critical success index are

higher in the peak season (AS) than in the early season

(JJ) or late season (ON) (Figs. 9a,d). The hit rates during

different seasonal periods are also estimated based on

the relative frequency occurrence of each pathway

(Fig. 8b) and the per-pathway hit rate (Fig. 3). The es-

timations are very close to the actual hit rates. This

suggests that the seasonal difference in tropical cyclo-

genesis predictability can be explained by the pre-

dictability differences among pathways. It is also worth

noting that the false alarm ratio in AS is close to that in

FIG. 6. Hit rate as a function of the forecast lead time for strong-Q (blue) and weak-Q groups (black) based on

(a) the combination of strong TT and weak TT pathways and (b) the combination of strong TT, weak TT, and TI

pathways. The sample size N for each group is indicated in the figure legends. Closed circles represent that the hit

rates between the two groups are significantly different from each other based on a permutation test (see text for

more information).
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ON and smaller than that in JJ (Fig. 9c) even though the

GEFS produces a larger number of false alarm storms in

AS than in JJ or ON (Fig. 9b),

d. Illustrative examples

An example of each genesis pathway is selected from

the hurricane season of 2010 and shown in Fig. 10. Su-

perimposed on the observed track and predicted genesis

locations in each plot is an inset showing the ensemble

hit rates at different forecast lead times. The ensemble

hit rate is defined as the ratio of the number of the en-

semble forecasts that produce a hit to the total ensemble

size (i.e., 11). The ensemble hit rate is then averaged

over different forecast lead periods (i.e., days 2–5, 6–9,

and 10–13).

Hurricane Igor (Fig. 10a) is a low-level baroclinic

case. It originated from an African easterly wave and

formed near the coast of West Africa on 8 September

2010 (Pasch and Kimberlain 2011). It was not a ‘‘merger

developer’’ according to the definition in Hankes et al.

(2015), but the formation of the storm resulted from the

interaction between the primary African easterly wave

south of the jet and vorticity disturbances north of the jet

(not shown). The ensemble hit rate of the storm is ;0.6

for days 2–5 and;0.5 for days 6–9 and drops to;0.2 for

days 10–13. The predicted genesis locations are close to

FIG. 7. (a) Hit rate, (b) false alarm rate, (c) false alarm ratio, and (d) critical success index as a function of the

forecast lead time for different subregions of the Atlantic: the EMDR, the CWMDR, Gulf, and SubAtl.
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the observed genesis location with a couple of excep-

tions. Hurricane Danielle (Fig. 10b) is a nonbaroclinic

case, and genesis occurred on 21 August 2010. Its de-

velopment involved interaction between an easterly

wave and an ITCZ disturbance (Kimberlain 2010). The

ensemble hit rate is slightly lower than that of Hurricane

Igor during days 2–5 and days 6–9 but slightly higher

during days 10–13.

Tropical Storm Matthew (Fig. 10c), falling into the

trough-induced category, formed over the Caribbean

Sea on 23 September 2010. Although the storm de-

veloped in the presence of an upper-level trough (not

shown), a low-level tropical easterly wave likely played a

dominant role in the development of Matthew, and the

storm formed near the center of the wave pouch

(Brennan 2010; Montgomery et al. 2012). The ensemble

hit rate from the GEFS-R2 is about 0.7 for days 2–5, and

it drops quickly with the forecast lead time. The pre-

dicted genesis locations have a large spread, indicating a

high fraction of early genesis or late genesis predictions

(i.e., incorrect genesis time). The ensemble hit rate

would be lower if the radius threshold (58) or the time

window threshold (6120 h) were reduced in the hit rate

calculation.

FIG. 8. (a) The relative contributions of different genesis pathways in different regions of the Atlantic. The

relative contribution of a pathway in a region is defined as the number of storms for the pathway in the region

normalized by the total number of storms in the region. (b) As in (a), but for different seasonal periods over the

North Atlantic basin. (c),(d) The solid lines show the regional and subseasonal hit rates estimated based on the

mean hit rate of each pathway and their relative frequencies of occurrence in a region or during a subseasonal

period (see text for more details). To facilitate comparison, the actual hit rates from Figs. 7a and 9a are shown in

(c) and (d), respectively, in dashed lines. Note that the TI pathway does not take place over the EMDRand the low-

level baroclinic pathway is absent over Gulf and SubAtl.
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Tropical Storm Bonnie (Fig. 10d) and Hurricane

Shary (Fig. 10e) are weak TT and strong TT storms,

respectively. Bonnie developed on 22 July 2010, from

the interaction between anAfrican easterly wave and an

upper-level low to the north of Hispaniola in late July

(Stewart 2010). Shary formed on 28 October 2010, along

the southern portion of a stationary frontal system under

the influence of an upper-level low associated with the

midocean trough (Avila 2011). While the ensemble hit

rate is low for Bonnie, the predicted genesis locations

are very close to that observed. As for Shary, only one

ensemblemember predicts the formation of a TC during

days 2–5, and the ensemble hit rate is nearly zero,

indicating a serious forecast challenge.

5. Summary and discussion

The practical predictability of tropical cyclogenesis

over the North Atlantic was examined in different syn-

optic flow regimes using the NCEP GEFS reforecasts.

Flow regimes were identified objectively by five tropical

cyclogenesis pathways that are categorized based on the

upper-level forcing and low-level baroclinicity of the

environmental atmospheric state (McTaggart-Cowan

et al. 2013). Among them, the NBC and LBC pathways

have negligible upper-level forcing and can be regarded

as purely tropical pathways; trough-induced, weak TT,

and strong TT pathways are associated with strong

upper-level forcing and have weak, moderate, and

FIG. 9. As in Fig. 7, but for different subseasonal time periods over the whole North Atlantic basin.
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strong low-level baroclinicity, respectively, and can be

regarded as hybrid or extratropical pathways. Since the

conventional ensemble spread metric cannot be readily

applied to the dichotomy between genesis and non-

genesis, the dependence of tropical cyclogenesis pre-

dictability on flow regimes was estimated by comparing

the hit rate for different genesis pathways in the way

that a lower hit rate represents lower predictability. The

hit rate of the pathways has the following order: LBC.
trough induced . NBC . weak TT . strong TT. Fur-

ther analysis showed that the RMSEs of vertical wind

shear and 700-hPa relative humidity help to explain the

different predictive skills for different pathways.

The low predictability of tropical transition pathways

is consistent with the general perception that the

extratropical atmosphere is less predictable than the

tropical atmosphere for forecast lead time beyond a few

days. We further examined whether stronger extra-

tropical influences imply lower genesis predictability

using the Q metric (i.e., upper-level forcing) as a proxy

for extratropical influences. Although the strong TT,

weak TT, and trough-induced pathways are categorized

based on the low-level baroclinicity, they are also asso-

ciated with upper-level forcing of different strengths:

strong upper-level forcing occurs most frequently in the

strong TT pathway and least frequently in the trough-

induced pathway. Once the genesis events classified into

these pathways are stratified by the Q metric, it shows

that the strong-Q group always has a lower hit rate than

the corresponding weak-Q group, suggesting that

stronger extratropical influences may lead to lower

genesis predictability.

Previous studies have reported that the predictive skill

of a model in tropical cyclogenesis varies from region to

region and from month to month (see the introduction).

Large spatial variations of the hit rate were also found in

this study: theMDR region has a higher hit rate than the

Gulf of Mexico or the subtropical Atlantic (the false

alarm ratio is similar and very large in all the regions).

These spatial variations can be largely explained by the

different relative contributions of the pathways in dif-

ferent regions. The relatively frequent occurrence of TT

FIG. 10. Illustrative cases for each genesis pathway in 2010.

Black curves represent the observed tracks, and dots of differ-

ent colors represent forecast genesis locations at different lead

times. The insets show the ensemble hit rates at different

lead times.
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pathways over the Gulf of Mexico and the subtropical

Atlantic contributes to the lower genesis predictability

in these regions. In addition, the purely tropical path-

ways (NBC and LBC) occur more frequently in August

and September, and this contributes to a relatively high

hit rate in the peak hurricane season compared to the

early and late seasons.

The impact of genesis pathways on predictability may

be understood through a thought experiment using a

genesis potential index (GPI). GPI is typically expressed

as a set of multiplicative factors based on physically

relevant predictors of storm formation (e.g., Emanuel

and Nolan 2004; Camargo et al. 2007). Denoting these

factors by Fk, where k is one of theN predictors included

in the GPI, we propose that the genesis predictability,

P(G), is directly related to the joint predictability of

the individual factors,

P(G)5 P
k51,N

P(F
k
) . (6)

Because of the prevalence of NBC and LBC pathways in

theMDR, it is reasonable to expect that the current GPI

formulations are most directly applicable to these de-

velopment types. The Emanuel and Nolan (2004) GPI

has N 5 4, but the number and form of optimal pre-

dictors may change for different pathways. In particular,

the GPI index mainly focuses on the lower- to mid-

tropospheric conditions, such as the 850-hPa vorticity

and 700-hPa RH, and the upper-tropospheric dynamical

conditions are not taken into account other than the

200–850-hPa vertical shear. Tropical cyclone formation

following strong TT and weak TT pathways, with their

reliance on upper-level extratropical precursors in a

baroclinic environment, might reasonably be assumed to

be sensitive to additional factors such that N . 4. Be-

cause P(G) decreases as N increases unless the pre-

dictability of the additional factors is unity, genesis

pathways that rely on more ingredients are expected to

have lower predictability.

Additionally, a change in P(G) can be realized

through changes in the marginal predictability, P(Fk),

for one or more of the factors. Tropical cyclogenesis is

involved with interaction between processes of different

spatiotemporal scales. The establishment of some fa-

vorable conditions, such as enhanced low-level vorticity

and elevated midlevel humidity, results from the posi-

tive feedback between the parent wave and the enclosed

moist convection in a typical NBC storm (Dunkerton

et al. 2009), and the stochastic nature of convection

limits the predictability of this process. In the case of the

LBC pathway, the interaction of northern and southern

waves leads to a stronger and deeper wave pouch

conducive to tropical cyclogenesis (Hankes et al. 2015).

The tropical, synoptic nature of this interaction and its

strong geographic preference likely enhance the pre-

dictability of genesis. In contrast, the development of a

TT storm is dependent on upper-level disturbances of

extratropical origin. Small forecast errors tend to grow

faster outside the tropics than within the tropics for

forecast lead time beyond a few days. In addition, the

apparent requirement of near saturation over a deep

layer is more difficult to achieve in strong vertical shear

(it is only through the finite amplitude structure of the

pre-TC disturbance that this can occur and only for a

limited time given the evolving structure characteristic

of a baroclinic wave). The resultant low predictability of

vertical shear and humidity contributes to the poorer

prediction of tropical transition (Fig. 4). An in-

vestigation of the relative contributions of this reduced

factor predictability [decreased P(Fk)] and an increased

number of factors (increased N) to the overall genesis

predictability for the TT pathways may yield additional

insight for the development of a pathway-conditional

GPI, which may provide improved genesis guidance

with a qualified level of predictive uncertainties.

This study aims to provide a systematic investigation

of tropical cyclogenesis predictability in different syn-

optic flow regimes. However, there are some admitted

limitations. First, the dependence of predictability on

flow regimes was estimated based on the hit rate. A

single metric may not provide a complete picture of how

predictable TCs are. For example, the false alarm ratio is

likely high for all the five pathways, and the false alarm

rate may be highest for the LBC pathway because of a

large number of false alarm storms over the eastern

MDR in the GEFS-R2. Second, this study was based on

only one reforecast dataset. It is possible that some re-

sults are model dependent. For example, the GEFS

has a negative bias in tropical cyclogenesis frequency

over the central and west Atlantic because of a sys-

tematic bias of themodel (Li et al. 2016), whichmay lead

to the lower predictive skill of the NBC pathway than

the trough-induced pathway. On the other hand, given

the generally lower predictability of extratropical at-

mosphere than tropical atmosphere at the synoptic time

scale and beyond and the impacts of vertical shear on

predictability, it is likely a robust finding that the

tropical transition pathways have lower intrinsic

predictability than the other pathways. This suggests

that storms developing near the southeast coast of

North America, which are more likely subject to strong

extratropical influences, may pose a particular challenge

for operational forecasts and emergency management.

Knowledge of the predictability of such coastal storms

can assist decision-making by providing useful estimates
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of predictive skill before forecast validation becomes

available.
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