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ABSTRACT

The eastern Pacific (EPAC) warm pool is a region of strong intraseasonal variability (ISV) during boreal

summer.While the EPAC ISV is known to have large-scale impacts that shape the weather and climate in the

region (e.g., tropical cyclones and local monsoon), simulating the EPAC ISV is still a great challenge for

present-day global weather and climate models. In the present study, the predictive skill and predictability of

the EPAC ISV are explored in eight coupled model hindcasts from the Intraseasonal Variability Hindcast

Experiment (ISVHE). Relative to the prediction skill for the boreal winterMadden–Julian oscillation (MJO)

in the ISVHE (;15–25 days), the skill for the EPAC ISV is considerably lower in most models, with an

average skill around 10 days. On the other hand, while the MJO exhibits a predictability of 35–45 days, the

predictability estimate for the EPAC ISV is 20–30 days. The prediction skill was found to be higher when the

hindcasts were initialized from the convective phase of the EPAC ISV as opposed to the subsidence phase.

Higher prediction skill was also found to be associated with active MJO initial conditions over the western

Pacific (evident in four out of eight models), signaling the importance of exploring the dynamic link between

the MJO and the EPAC ISV. The results illustrate the possibility and need for improving dynamical pre-

diction systems to facilitate more accurate and longer-lead predictions of the EPAC ISV and associated

weather and short-term climate variability.

1. Introduction

The eastern Pacific warm pool is a region of strong

intraseasonal variability (ISV) during boreal summer.

The 30–50 days (hereafter 40 day) ISV mode of the

eastern Pacific (EPAC) is largely characterized by

eastward propagation of convective anomalies (Knutson

andWeickmann 1987;Kayano andKousky 1999;Maloney

and Hartmann 2000a; and many others). Besides the

40-day mode, a quasi-biweekly mode of about 16-day

periodicity is also prominent over the EPAC domain

(Jiang and Waliser 2009; Kikuchi and Wang 2009; Wen

et al. 2011). In addition to the eastward propagation,

the EPAC ISV also exhibits a northward propagating

component, possibly due to the presence of strong ver-

tical zonal wind shear over the EPAC warm pool (Jiang

andWaliser 2008; Maloney et al. 2008). Even though the
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EPAC ISV is restricted to a relatively small tropical

domain, it exerts widespread influences on the regional

weather and climate. It impacts and modulates the

tropical cyclone activity over the EPAC and the Gulf of

Mexico (e.g., Maloney and Hartmann 2000a,b; Jiang

et al. 2012), the summertime wind jets and precipitation

(Serra et al. 2010; Martin and Schumacher 2011; Moon

et al. 2013), the North American monsoon (Higgins and

Shi 2001; Lorenz and Hartmann 2006), and midsummer

droughts over Central America and Mexico (Magaña
et al. 1999; Small et al. 2007).

Notwithstanding the regional impacts of the EPAC

ISV, efforts toward understanding and simulating the

EPAC ISV are rather limited (e.g., Maloney and Kiehl

2002; Maloney and Esbensen 2005; Maloney et al. 2014)

when compared to the numerous studies focused on the

Madden–Julian oscillation (MJO) (Lau and Waliser

2012; Zhang 2005, and references therein). J. Lin et al.

(2008), in one of the earliest assessment of the general

circulation models (GCMs) ability in simulating the

EPAC ISV, based on model simulations from phase 3 of

the Coupled Model Intercomparison Project (CMIP3),

showed that generally most GCMs underestimated the

intraseasonal precipitation variance over the EPAC

warm pool and often failed to capture the eastward

propagation of convective anomalies. In a recent study

by Jiang et al. (2013), it was shown that out of 16 GCMs

included in phase 5 of CMIP (CMIP5), only seven

GCMs were able to capture the spatial pattern of the

leading EPAC ISV mode in precipitation; and even in

these GCMs the biases in simulating EPAC ISV am-

plitude were quite large. On the other hand, another

multimodel evaluation by Jiang et al. (2012) noted that

higher-resolution models with improved representation

of deep convection were more skillful in simulating the

EPAC ISV modes. While these studies evaluated GCM

capabilities in simulating the intrinsic EPAC ISV mode,

assessing the prediction capabilities in GCMs for the

EPAC ISV mode is an area that has never been ex-

plored. The past decade has witnessed significant im-

provement in dynamical prediction skill for the MJO

(e.g., Seo et al. 2009; Vitart and Molteni 2010; Rashid

et al. 2011;Waliser 2011; Zhang and Van denDool 2012;

Wang et al. 2014; Neena et al. 2014). Assessing the

EPAC ISV prediction skill in a suite of contemporary

GCMs would be of considerable value for the ISV

forecasting efforts, for the North and Central American

regions in particular.

Understanding the inherent predictability of the

EPAC ISV mode is another aspect essential for framing

prediction efforts and assessing their skill. While many

earlier studies have explored the predictability (perfect

model) for other ISV modes (Waliser et al. 2003a,b;

Liess et al. 2005; Fu et al. 2007; Pegion and Kirtman

2008; Neena and Goswami 2010), the predictability of

the EPAC ISV mode has never been estimated. In the

present study, based on hindcasts from eight different

coupled GCMs participating in the Intraseasonal Vari-

ability Hindcast Experiment (ISVHE), estimates of

prediction skill and predictability of the EPAC ISV are

reported for the first time. The prediction skill and

predictability of the winter MJO and Asian summer

monsoon ISV in thesemodels have been explored in two

companion studies (Neena et al. 2014; J. Lee et al. 2014,

unpublished manuscript).

Another aspect of interest concerning the EPAC ISV

is its association with the MJO and/or boreal summer

intraseasonal oscillation (BSISO). The EPAC warm

pool represents a region with the largest MJO influences

on regional precipitation variability, outside the Indo-

Pacific warm pool. Because of its dominant eastward

propagating character, the EPAC ISV was often con-

sidered a local expression of the global MJO mode

(Knutson and Weickmann 1987; Kayano and Kousky

1999; Maloney and Hartmann 2000a; and many others),

initiated by eastward propagation of convective signals

across the date line from the western Pacific (Maloney

and Esbensen 2007; Maloney et al. 2008). Moon et al.

(2013) further showed that the EPAC ISV is closely

linked with the ISV over the Indian and western North

Pacific summer monsoon region. However, modeling

studies showed that in several GCMs, which exhibited

realistic simulations of the EPAC ISV, the physical link

betweenwestern PacificMJO convection and the EPAC

ISV was not always evident. In these GCM simulations,

the EPAC ISV convective signals often originate from

the central Pacific between 1508E and 1508W (Jiang

et al. 2012, 2013). This finding indicated that the EPAC

ISV could be a local mode with an existence in-

dependent of the eastward propagating MJO.

The observed phase locking of EPAC ISV convective

activity with that over the Indo-Pacific warm pool (e.g.,

Wang et al. 2006; Maloney and Esbensen 2007; Maloney

et al. 2008; Jiang et al. 2012; Moon et al. 2013) suggests

that one ormore remote forcingmechanismsmight be at

work, linking the intraseasonal convective activity over

the two regions. Wang et al. (2006) associated the see-

saw pattern of convective activity between the EPAC

and the eastern Indian Ocean domain with stationary

pulses of the Walker circulation and suggested

a mechanism of communication involving upper-level

divergent waves. Based on a regional coupled model

experiment, Small et al. (2011) proposed that fast

propagating dry Kelvin waves, generated in response to

the intraseasonal convective activity over the western

Pacific, could be responsible for the reinitiation of
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opposite phase of convection over the eastern Pacific.

The relative roles of local convection–circulation feed-

backs and the proposed mechanism of MJO remote

forcing in maintaining the EPAC ISV were investigated

in a modified version of the National Center for At-

mospheric Research (NCAR) Community Atmosphere

Model (CAM), version 3.1, and the International Pacific

Research Center (IPRC) Regional Atmosphere Model

(IRAM) byRydbeck et al. (2013). They found that while

the EPAC ISV could be initiated and sustained in the

CAM even in the absence of remote forcing from the

western Pacific, the regionally generatedEPAC ISVwas

found to be weak and incoherent when cut off from all

remote intraseasonal signals. However, a clear insight

into the EPAC ISV–MJO relationship was not afforded

from the study mainly because of the model discrep-

ancies in simulating the EPAC ISV. A well-designed

experimental framework based on a suite of models with

reasonably good EPAC ISV simulation capability,

might provide some interesting insight to this problem.

While such an analysis is not the focus and beyond the

scope of the present study, we will try to further char-

acterize the MJO–EPAC ISV relationship using ob-

served data, particularly in the context of its possible

impacts on EPAC ISV prediction skill.

The manuscript is structured as follows. In section 2,

details of the ISVHE hindcast data are provided and a

brief description of the method to estimate prediction

skill and predictability is provided. Isolation of the lead-

ing EPAC ISV modes based on the observations is dealt

with in section 3. In section 4, the prediction skill esti-

mation for the EPAC ISV in the eight model hindcasts

is reported. Details of the predictability estimation ap-

proach and the predictability estimates for the EPAC

ISV in the eight models are presented in section 5. The

EPAC ISV–MJO relationship is explored in section 6

and the influences of MJO remote forcing on the EPAC

ISV hindcast skill in different models are estimated. The

summary and conclusions from the study are provided in

section 7.

2. Data and approaches

We analyze the hindcasts for the boreal summer sea-

son (May–September) from eight coupled models that

participated in the ISVHE project, including two ver-

sions of the Australian Bureau of Meteorology (BoM)

coupled model (ABOM1 and ABOM2), two versions of

the National Centers for Environmental Prediction

(NCEP)/Climate Prediction Center (CPC) coupled

models [Climate Forecast System (CFS) versions 1 and 2

(CFS1 and CFS2)], the European Centre for Medium-

Range Weather Forecasts (ECMWF) model, the Japan

Meteorological Agency (JMA) coupledmodel (JMAC),

the coupled model of the Centro Euro-Mediterraneo

per i Cambiamenti Climatici (CMCC), and the Seoul

National University (SNU) coupledmodel (SNUC). For

further details of the ISVHE project and the partici-

pating models, please refer to J. Lee et al. (2014, un-

published manuscript) and Neena et al. (2014). While

we have used all the available years of data [Table 1 of

Neena et al. (2014)] in the predictability estimation, the

prediction skill estimates are based on data starting 1998

[for verification against the Tropical Rainfall Measuring

Mission (TRMM) 3B42 precipitation–based estimates].

Daily fields of the TRMM 3B42 precipitation (Huffman

et al. 2007) and 850-hPa zonal wind (U850) fields from

the ECMWF Interim Re-Analysis (ERA-Interim; Dee

et al. 2011) are used for deriving the EPAC ISV mode

and as the verifying analyses in the prediction skill es-

timation. The Real-Time Multivariate MJO (RMM) in-

dices (Wheeler andHendon 2004, hereafterWH04) from

1979 to 2012 were obtained from http://cawcr.gov.au/

staff/mwheeler/maproom/RMM/. The newly developed

all-season outgoing longwave radiation (OLR)-basedMJO

index (OMI;Kiladis et al. 2014) for the periodwas obtained

from http://www.esrl.noaa.gov/psd/mjo/mjoindex/. The

OMI represents the principal components (PCs) ob-

tained by projecting 20–96-day time filtered OLR onto

the two dominant daily empirical orthogonal function

(EOF) modes of 30–96-day eastward filtered OLR See

Kiladis et al. (2014) for further details of the OMI.

The commonly used correlation-based approach (e.g.,

H. Lin et al. 2008; Rashid et al. 2011) is adopted for the

prediction skill estimation of the EPAC ISV based on

the model hindcasts. Skill is also estimated following the

signal-to-noise ratio approach as in Neena et al. (2014).

This signal-to-noise ratio approach was also employed

to estimate the predictability of the leading ISV mode.

Two estimates of predictability are attempted, namely

a single-member predictability estimate and an ensemble-

mean predictability estimate. For the single-member

predictability estimate, a single member hindcast is eval-

uated against every other member hindcast in a perfect

model sense. In the ensemble-mean predictability esti-

mate, a given ensemble member hindcast is evaluated

against the ensemble-mean hindcast involving all the

other ensemble members. These approaches have been

used for estimating the winter MJO predictability in the

same eight model hindcasts by Neena et al. (2014).More

details of the estimation are provided in section 6 as well

as in Neena et al. (2014). While the estimates of average

and ensemble-mean prediction skill would give an as-

sessment of the actual prediction capability for the EPAC

ISV in dynamical models, the perfect model predictability

estimates using single-member and ensemble-mean
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approaches would help us gauge the unexplored po-

tential for predicting the EPAC ISV mode.

3. The EPAC ISV mode

The leading EPAC ISVmode is isolated by conducting

an EOF analysis of the combined fields of 20–100-day

filtered daily TRMM precipitation and ERA-Interim

U850 anomalies over the EPAC domain of 08–258N,

1308–808W for the May–September season from 1998 to

2012. Before computing the EOF of the combined fields,

the filtered precipitation and U850 fields are first nor-

malized by the corresponding temporal standard de-

viation values. It has been shown by many previous

studies that multivariate EOF (MEOF) analysis is a very

useful approach for extracting dominant intraseasonal

signals (e.g., Wang 1992; WH04; Lee et al. 2013). The

first two MEOF modes (MEOF1obs and MEOF2obs)

explains 32% and 9% of the variance (Figs. 1a and 1b)

respectively, and represent the propagating facets of the

EPAC ISV. While MEOF1obs captures the north–south

dipole mode of convection over the EPAC domain,

MEOF2obs represents an eastward shifted zonally

elongated band of convection around 108N. Maximum

correlation between the two PCs is observed when

PC1orig leads PC2orig by 8–10 days (correlation of 0.53;

not shown). Based on the first two PCs, eight phases of

the EPAC ISV were then defined analogously to the

MJO RMM indices (WH04). Composites of 20–100-day

filtered precipitation and U850 anomalies for the eight

FIG. 1. (a),(b) The first two MEOF patterns (MEOF1obs and MEOF2obs) of 20–100-day filtered daily anomalies of TRMM 3B42

precipitation (shaded, mmday21) and ERA-Interim U850 (contours, m s21) for the May–September (MJJAS) season from 1998 to 2012,

over the eastern Pacific domain (08–258N, 1308–808W). The percentage of variance explained by the MEOF patterns is given at the top

right-hand corners of the panels. (c) Composites of 20–100-day filtered TRMM 3B42 precipitation (shaded) and ERA-Interim U850

(contours) anomalies for the eight phases of EPAC ISV evolution (clockwise, beginning from top left) defined by the principal com-

ponents of the two MEOF patterns. The contours range from23.5 to 3.5m s21 with an interval of 0.5. Solid (dashed) contours represent

positive (negative) values.
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ISV phases are shown in Fig. 1c. The northeastward

propagation of the EPAC ISV convective anomalies

(cf. Jiang and Waliser 2008) are clearly evident from

the phase composites. Phases 2–4 capture the evolution

of negative precipitation anomalies over the EPAC,

while phases 6–8 represent the convective phase of the

EPAC ISV.

The PC time series (PC1orig and PC2orig) for theMay–

October 1998 season are shown in Figs. 2a and 2b (blue

lines). The average power spectra (over 15 yr) of PC1orig
and PC2orig suggest a prevailing period of about 40–50

days associated with the leading ISV mode (Figs. 2c,d,

blue curves). In addition to the 40–50-day spectral peak,

a secondary peak around 30 days is also evident in

PC2orig, which could be associated with the quasi-

biweekly ISV mode reported over the EPAC, to be

further discussed below (e.g., Jiang and Waliser 2009).

The purpose of the study is to estimate the prediction

skill and predictability of the EPAC ISV, and in the fol-

lowing sections we derive the PCs from model hindcasts.

Since the model hindcasts are of short length, applying

a 20–100-day bandpass filter is not viable and to filter

out the weather-scale variability (at least partly) with-

out losing many data points, we apply a 5-day running

mean filter to the hindcast data. To test the feasibility

of the PCs obtained in this manner, the observed PCs

were also derived by projecting the 5-day running

mean smoothed anomalies onto the MEOFobs, and the

resultant PCs are referred to as PC1obs and PC2obs. The

red lines in Figs. 2a and 2b represent the PC1obs and

PC2obs from May to October 1998. The average power

spectra for PC1obs and PC2obs during 15 summers are

shown as the red curves in Figs. 2c and 2d. It is seen that

PC1obs is quite similar to PC1orig (correlation of 0.92),

with both exhibiting a 40-day spectral peak. In contrast,

PC2obs retains considerably more high-frequency vari-

ability than PC2orig (correlation of 0.82). The presence

of the quasi-biweekly EPAC ISV mode is clearly evident

in the PC2obs power spectra, with a secondary spectral

peak in the 10–30-day period range. The aforementioned

spectral peak at about 30 days in the PC2orig spectra

(blue curve in Fig. 2c) seems to be the result of the cutoff

at 20 days resulting from bandpass time filtering. Hence,

cautions need to be exercised that while MEOF1obs
and MEOF2obs together represent the leading 40-day

ISV mode over the EPAC, the spatial pattern of the

MEOF2obs in particular may also represent part of sig-

nals of the high-frequency ISV mode over the EPAC.

This needs to be borne in mind when evaluating the

predictive skill of EPAC ISV in model hindcasts as to

be dealt with in section 4.

4. Prediction skill for the EPAC ISV

The hindcast skill for the EPAC ISV in the eight models

is estimated using the PCs (PC1hcast and PC2hcast hereafter)

FIG. 2. (a),(b) The principal component time series obtained by projecting 20–100-day filtered anomalies (PC1orig
and PC2orig, blue lines) and 5-day running mean smoothed anomalies (PC1obs and PC2obs, red lines) onto the two

dominant MEOF modes, for the May–October 1998 season. (c),(d) The average power spectra (over 15 yr, 1998–

2012) and the corresponding red noise spectra for PC1orig and PC2orig (blue) shown along with those for PC1obs and

PC2obs (red).
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derived by projecting daily hindcast anomalies of pre-

cipitation and U850 onto MEOF1obs and MEOF2obs. This

method of forecast skill estimation has been employed by

many earlier studies (e.g., Vitart et al. 2007; H. Lin et al.

2008; Seo et al. 2009). The preprocessing steps involve the

computation of daily hindcast anomalies by removing

the hindcast climatology from the daily fields and ap-

plying a 5-day running mean to the anomalies to remove

some of the high-frequency synoptic scale variability.

Note that while a 20–100-day bandpass time filtering was

applied to derive the two leading MEOF modes of the

EPAC ISV from the observations, both the hindcast PCs

and the observed PCs used for verification are computed

using 5-day running mean smoothed anomalous fields.

Without bandpass filtering the PC time series corre-

sponding to MEOF2obs may retain significant signals

associated with the quasi-biweekly ISV mode and other

high-frequency modes (see Fig. 2b). Hence we have

refrained from estimating the combined prediction skill

and predictability for the two leading PCs but rather

have made estimates separately for PC1 and PC2.

The hindcast skill for the EPAC ISV in the models is

measured as the hindcast lead day at which the corre-

lation between PC1hcast (PC2hcast) and PC1obs (PC2obs)

falls below a 0.5 threshold. Figures 3a and 3b illustrate

the average individual hindcast prediction skill (dashed

lines) and the ensemble-mean prediction skill (solid

lines) in the eight models for PC1 and PC2, respectively.

The prediction skill estimates are based on hindcasts for

which the EPAC ISV amplitude, defined by (PC1orig
2 1

PC2orig
2 )1/2, was greater than 1.0 on the day of hindcast

initiation. TheECMWF,CFS2, CMCC, and SNUmodels

exhibit maximum prediction skill for PC1 in individual

hindcasts, with an average skill of 10–12 days. It is

noteworthy that the average prediction skill for the

boreal winter MJO based on the same eight models is

about 15 days, with the ECMWF model showing the

highest skill of 19 days (Neena et al. 2014). Also note

that the largest skill improvement for the EPAC ISV

achieved by ensemble-mean hindcasts over the in-

dividual hindcasts is about 2–4 days, which is consider-

ably lower than the 8–10-day skill improvement found

for the boreal winter MJO (Neena et al. 2014; J. Lee

et al. 2014, unpublished manuscript). While the PC2

hindcast skill is 10 days in the ECMWF model, it is less

than 7 days in all other models. As discussed in the

previous section, the PC2hcast and PC2obs may be con-

taminated by high-frequency ISV variability; there-

fore, the PC2 skill in most models may not purely

reflect the skill for the leading 40-day ISV mode over

the EPAC.

Next, prediction skill for the EPAC ISV is explored

separately for the convective and subsidence phases of

the EPAC ISV. For any model, the hindcasts were di-

vided into two groups: the convective phase (phases 6–8)

and the subsidence phase (phases 2–4), based on the

EPAC ISV phases (identified using PC1orig and PC2orig)

and the EPAC ISV amplitude being greater than 1.0 on

the day of hindcast initiation. Hindcasts were initialized

during the ISV transition phases; phases 1 and 5 were

not included. Examination of the average prediction

skill for PC1 for these two cases (Fig. 4) shows that in

most of the models, hindcasts initialized from the EPAC

ISV convective phases (red bars) exhibits higher aver-

age prediction skill than those initialized from sub-

sidence phases (blue bars). The 95% confidence

estimates for the correlation based skill score are rep-

resented by the error bars in Fig. 4. For estimating the

95% confidence estimates, a Fisher Z0 transformation

is applied to the correlation coefficient (Fisher 1921;

FIG. 3. (a) Correlation between PC1obs and PC1hcast values (y axis) in the eight coupled models as a function of

forecast lead (x axis; days). Correlations corresponding to individual hindcasts (ensemble-mean hindcasts) are shown

as dashed (solid) lines. The corresponding prediction skill estimates are marked by the forecast lead at which the

correlation drops below a 0.5 threshold (orange solid line). (b) As in (a), but for observed and hindcast PC2.
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the correlation coefficient is transformed to a variable

that is normally distributed with a known standard

error) at each hindcast lead day. The confidence in-

terval is estimated corresponding to a standard nor-

mal distribution and an inverse transform is used to

obtain the corresponding correlation limits. The lead

day of hindcast for which the confidence limits of the

correlation coefficient falls below the 0.5 threshold is

used to define the confidence limits of prediction skill

shown in Fig. 4. In ABOM1, ABOM2, ECMWF, and

CFS2, the difference between the correlation-based

skill scores for convective and subsidence phases (red

and blue bars) are larger than the combined error for

the two skill score estimates at 95% confidence (the

error bars do not overlap). Hence the difference in

skill for these models can be considered to be statis-

tically significant.

5. Predictability of the EPAC ISV

The predictability of the EPAC ISV mode is mea-

sured using the same two approaches as in Neena et al.

(2014), namely, single-member predictability estimate

and ensemble-mean predictability estimate. For the

single-member predictability estimate, a single member

of the ensemble is considered as the control hindcast,

and every other ensemble member is regarded as a per-

turbed hindcast. For the ensemble-mean predictability

estimate, any given member hindcast is considered as

the control hindcast, and the ensemble mean from all

other members is considered as the perturbed hindcast.

The PC1hcast and PC2hcast estimates from the control and

perturbed hindcasts are analyzed. The ‘‘error’’ or di-

vergence of the PC trajectories is measured as the

squared difference between control and perturbed

hindcast PC1hcast and PC2hcast values, as a function of

lead time. The ‘‘signal’’ is defined as the average vari-

ance of the control hindcast PC over a 41-day sliding

window. A 41-day window was chosen as it covers a full

cycle of the EPAC ISV. The results were found to be

consistent for a 46- or 51-day choice of window length.

Predictability for the corresponding PC is then defined

as the hindcast lead at which the error becomes as large

as the signal (e.g., Waliser et al. 2003a,b; Pegion and

Kirtman 2008). The details of the single-member and

ensemble-mean predictability estimation methods can

be found in Neena et al. (2014). The only variation in the

approach in this study is that we make individual pre-

dictability estimates for PC1hcast and PC2hcast, rather

than a combined estimate as in Neena et al. (2014). As

shown in the followingEq. (1), themean square error for

each lead day j is computed over a total N 3 m1 cases

(m1 is the number of possible control-perturbed pairs for

a given initial condition and N gives the total number of

initial conditions). For the ensemble-mean estimate,m1

is equal to the ensemble size nk. For the single-member

predictability estimate m1 takes the value of nk 2 1

factorial when all the ensemble members are initialized

the same day, while it counts only those ensemble pairs

initialized with a maximum separation of 1 day when the

ensemble members are initialized from time-lagged

initial conditions:

hE2
j i[

1

N3m1

�
N

i51
�

m
1
control perturbed pairs

(PCcontrol
ij 2PC

perturbed
ij )2 . (1)

Themean signal [Eq. (2)] is computed over a totalN3 nk

control cases as a function of lead day j, as follows.

The observed PC values (PC1obs and PC2obs) prior to

hindcast initiation day were also used in the sliding

window variance computation:

hS2j i[
1

N3 nk
�
N

i51
�

nk control

"
1

41
�
20

t5220

(PCcontrol
ij )2

#
. (2)

The single-member and ensemble-mean estimates of

predictability for the two PCs are shown in Fig. 5.

Figures 5a and 5b show the mean square error (solid

blue: single-member method; solid black: ensemble-

mean method) and mean signal (solid red) estimates

based on each model hindcast for PC1hcast and PC2hcast,

respectively. The 95% confidence estimates (obtained

based on a Student’s t test) for both error and signal are

shown as dashed lines. For PC1, the single-member

FIG. 4. Average individual hindcast prediction skill for PC1 for

hindcasts initiated from EPAC ISV convective phase (phases 6–8;

red bars) and EPAC ISV subsidence phase (phases 2–4; blue bars).

The error bars represent the 95% confidence estimates for the

correlation based prediction skill.
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predictability estimates from the eight models ranges

from 15 to 23 days with an average value of 19 days,

whereas that based on the ensemble-mean approach

extends to a 20–30-day range. The predictability for PC2

is much lower, ranging from 9 to 17 days for single-

member estimate and about 21 days for ensemble-mean

estimate.Although an average predictability of 15–23 days

for the EPAC ISV mode is lower than the 21–28-day

FIG. 5. (a) Average error and signal estimates for PC1 in the eight models. Saturation of the blue solid error growth curve (single-

member estimate) with respect to the signal (red solid) marks the predictability for individual hindcasts (denoted by the black vertical line

along with the corresponding number of forecast lead day in red in each panel) and saturation of the black solid error growth curve

(ensemble-mean estimate) with respect to the signal (red solid) marks the predictability for ensemble-mean hindcasts. Shown as dashed

lines are the 95% confidence estimates for error and signal. (b) As in (a), but for PC2. Note the y-axis scale is not uniform in the panels of

(a) and (b).
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predictability found for the boreal winter MJO in the

same set of models (Neena et al. 2014), it has a similar

range as the summer monsoon ISV reported by earlier

studies (Liess et al. 2005; Neena and Goswami 2010). To

compare against the predictability estimates based on

the signal-to-noise ratio framework, the prediction skill

for PC1 was estimated using the signal-to-noise ratio

approach. For estimating prediction skill, PC1obs is

treated as the ‘‘control’’ in Eqs. (1) and (2). The average

prediction skill for individual hindcasts and ensemble-

mean prediction skill for PC1 in the eightmodels and the

respective 63-day predictability estimate ranges are

shown in Fig. 6. With an average prediction skill around

10 days and limited improvement in ensemble-mean

prediction skill, a 20–30-day predictability leaves a lot of

room for improving the dynamic prediction of the

EPAC ISV mode.

6. EPAC ISV–MJO relationship

As previously mentioned, the association between the

ISV over the EPAC warm pool and the global MJO has

been reported by many earlier studies. While some

studies identified the EPAC ISV as regional manifes-

tation of the global MJO (Maloney and Esbensen 2007;

Maloney et al. 2008; and many others), latest modeling

studies (Jiang et al. 2012, 2013; Rydbeck et al. 2013)

indicated that the EPAC ISV could be sustained even in

the absence of propagatingMJO signals from thewestern

Pacific. The relative roles of local convection–circulation

feedbacks versus remote forcing mechanisms in initiat-

ing andmaintaining the EPAC ISV are still not quite well

understood. While a detailed analysis of these aspects

is beyond the scope of the present study, in this section

we undertake an analysis of the EPAC ISV–MJO

relationship based on observation-based MEOFs and

PCs and attempt to explore its possible implications on

the EPAC ISV prediction skill in the ISVHE hindcasts.

All the analyses are based on the summer season (May–

October).

Days of strong EPAC ISV activity are identified based

on the PC1orig and PC2orig time series, as when the

combined amplitude of the two PCs [(PC1orig
2 1

PC2orig
2 )1/2] is greater than 1.0. Of the total number of

days, 44% are found to be EPAC ISV active days.

Similarly, strongMJO events are identified based on the

RMM (WH04) and OMI (Kiladis et al. 2014) ampli-

tudes. The OMI is used as an alternate MJO index since

the RMM amplitude is often suspected to be influenced

by projections from east Pacific wind anomalies. It is

noted that 68% (55%) of EPAC ISV active days oc-

curred in conjunction with active MJO conditions

[RMM amplitude .1.0 (1.2)] and 32% (22%) of EPAC

ISV active days occurred while the MJO was weak or

quiescent [RMM amplitude ,1.0 (0.8)]. Based on the

OMI, 65% (51%) of EPAC ISV active days are found to

be associated with active MJO conditions [OMI ampli-

tude.1.0 (1.2)] and 35% (23%) of theEPAC ISV active

days are associated with weak or quiescent MJO [OMI

amplitude ,1.0 (0.8)] (not shown).

Based on the EPAC ISV active days occurring in

conjunction with active MJO conditions, we next ex-

plore whether the EPAC ISV activity bears any re-

lationship with the phase ofMJO. The EPAC ISV active

days co-occurring with active MJO conditions (RMM

amplitude .1.2) are divided into two sets, one repre-

senting the EPAC ISV subsidence phases (phases 2–4)

and the other representing EPAC ISV convective pha-

ses (phases 6–8). For the two cases, the probability of

occurrence ofMJO in the eight RMMphases is explored

at different lag/lead days (Figs. 7a,b). From Fig. 7a, it is

evident that 82% of the EPAC ISV subsidence phase

days, occurred along with active MJO convection over

the western Pacific (where 82% includes RMMphases 4,

5, and 6 combined). And 88% of the EPAC ISV con-

vective phase days are associated with MJO convection

over Africa and Indian Ocean (where 88% includes

RMM phases 8, 1, and 2 combined) with subsidence

conditions prevailing over the western Pacific (Fig. 7b).

This is in agreement with the phase locking of opposite

phases of convection over the eastern and western Pa-

cific, reported in many earlier studies (e.g., Maloney and

Hartmann 2000a;Wang et al. 2006; Maloney et al. 2008).

Similar results are obtained when the MJO phases are

defined based on OMI (Figs. 7c,d). To facilitate direct

comparison with the RMM indices, we have followed

the necessary reordering of OMI PCs recommended by

Kiladis et al. (2014). We found 75% of EPAC ISV

FIG. 6. Signal-to-noise ratio based estimates of prediction skill

and predictability for EPAC ISV PC1 in the eight models (x axis).

Average individual hindcast prediction skill estimates are shown as

black bars and ensemble-mean prediction skill estimates are shown

as hatched bars. A63-day range for single-member and ensemble-

mean estimates of predictability are represented by the tan and

gray shaded areas respectively.
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subsidence phase days to be associated with active MJO

convection over the western Pacific (where 75% in-

cludes OMI phases 5–7 combined) (Fig. 7c). Also, 85%

of EPAC ISV convective phase days are associated with

subsidence conditions over western Pacific (where 85%

includes OMI phases 8, 1, 2, and 3 combined) (Fig. 7d).

The slight eastward shift in the distributions in Figs. 7c

and 7d compared to Figs. 7a and 7b might be due to

slight disparities in the location and strength of con-

vection for the MJO phases defined by the two indices.

Differences in the lead–lag relationship between PC1orig
time series with the RMM/OMI PCs could also be

a contributing factor. Maximum negative correlation is

observed when RMM1 leads PC1orig by 1–2 days, while

OMI-1 exhibits maximum negative correlation when it

leads PC1orig by 5 days. RMM2 exhibits maximum

negative correlation when it lags PC1orig by 7–8 days.

OMI-2, on the other hand, shows maximum negative

correlation when it lags PC1orig by 5 days (not shown).

As previously mentioned, 22%–32% of active EPAC

ISV days occurred in conjunction with quiescent MJO

conditions. Next we explore whether the presence or

absence of MJO forcing have any influences on the

amplitude of EPAC ISV. To ensure better accuracy of

results, well-separated thresholds are used for identify-

ing active and quiescent MJO conditions. Figure 7e

FIG. 7. (a) Probability of occurrence (shown as percentage) of MJO (RMM amplitude .1.2) in the eight RMM

phases (x axis) at different lead–lag days with respect to days when the EPAC ISV (amplitude .1.0) is in its sub-

sidence phase (EPAC ISV phases 2–4) and (b) convective phase (phases 6–8). (c),(d) As in (a),(b), but the MJO is

defined by OMI. (e) The pdf of EPAC ISV amplitude associated with active MJO conditions (in blue; solid line:

RMM amplitude .1.2 and dashed line: RMM amplitude .1.5) and quiescent MJO conditions (in red; solid line:

RMM amplitude ,0.5 and dashed line: RMM amplitude ,0.8). (f) As in (e), using OMI in place of RMM.
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shows the probability distribution function (pdf) of

EPAC ISV amplitude associated with active MJO con-

ditions (two thresholds are considered, RMMamplitude

.1.2 and .1.5) and quiescent MJO conditions (two

thresholds are considered, RMM amplitude ,0.8 and

,0.5). It is observed that the EPAC ISV amplitude

tends to be slightly skewed toward the lower-amplitude

range when the MJO forcing is weak. The pdfs based on

the OMI thresholds are shown in Fig. 7e and the results

are very similar. Since consistent results are obtained

irrespective of the index used for defining MJO, for the

remaining analyses only the results based on RMM are

reported.

The intraseasonal variance of precipitation over the

EPAC associated with weak MJO events is found to be

lower than that associated with active MJO events (not

shown). This difference is further explored in the com-

posites of 20–100-day filtered precipitation and U850

anomalies for the eight phases of the EPAC ISV, based

onwhether it occurred in conjunction with active (RMM

amplitude .1.2) or quiescent (RMM amplitude ,0.5)

MJO conditions. The eastward propagation of the ISV

over the eastern Pacific as well as that over the Indian

Ocean/western Pacific is shown in the time–longitude

profiles based on the composites during active (Fig. 8a)

and quiescent (Fig. 8b) MJO conditions. The eight

EPAC ISV phases are used to represent the time axis.

Following Jiang et al. (2012), considering the eastward

propagating MJO signals are mainly confined near the

equator over the Indo-Pacific, the anomalies are aver-

aged between 108S and 158N for the longitudes from

608E to 1508W; whereas for the eastern Pacific domain

from 1508 to 808W, the anomalies are averaged between

58 and 158N, since the EPAC ISV has an off-equatorial

domain of activity. It is clearly evident that when the

MJO signal is weak, the EPAC ISV amplitude is weak in

both fields. Moreover, a strong physical link between

eastern and western Pacific ISV is readily discerned in

both precipitation andwind anomalies when the western

Pacific MJO is active (Fig. 8a) but is not evident when

the MJO is weak (Fig. 8b). In the latter case, the sys-

tematic eastward propagation is only observed to the

east of 1208W and appears more local in origin. The

results are similar when quiescent MJO condition is

defined using a threshold of RMMamplitude,0.8. Thus

it suggests that even in the absence of propagating MJO

signals from the west, the EPAC ISV might still exist by

itself, although at a weaker amplitude. While the pos-

sibility of remote forcing from western Pacific cannot be

ruled out, even in the absence of an organized large-

scale MJO propagating signal, it can be assumed that

local convection circulation feedbacks might have an

FIG. 8. The eastward propagation of 20–100-day filtered precipitation (shading, mmday21) and U850 (contours,

m s21) anomalies in the composites based on the eight EPAC ISV phases concurrent with (a) active MJO conditions

(RMM amplitude .1.2) and (b) quiescent MJO conditions (RMM amplitude ,0.5). The time axis (y axis) is rep-

resented by the eight EPAC ISV phases. For the 608E–1508W longitudes, the anomalies are averaged between 108S
and 158N and for the eastern Pacific domain from 1508 to 808W, the anomalies are averaged between 58 and 158N. The

precipitation anomalies are shown in shading and the U850 anomalies are shown as contours. The contours range

from 22.1 to 2.1m s21 with an interval of 0.3m s21. Solid (dashed) contours represent positive (negative) values.
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upper hand in sustaining the EPAC ISV when the MJO

forcing is weak. Wang and Zhang (2002) showed how

atmosphere–ocean interaction in the presence of

a background convergence zone was responsible for the

maintenance of the ISV over the western and northern

Pacific. A similar mechanism might be at work over the

EPAC ISV domain. In the next section we further ex-

plore whether the presence or absence of MJO forcing

has any direct implications on the EPAC ISV prediction

in the ISVHE models.

The hindcasts are grouped based on the MJO being

active (RMM amplitude .1.2) or quiescent (RMM

amplitude ,0.8) on the day of hindcast initiation, and

the average individual hindcast prediction skill for these

two cases was shown in Fig. 9a. For a comparison, the

corresponding MJO prediction skill estimates in these

eight models are also shown in Fig. 9b. Note that the

MJO prediction skill shown here is based on the bi-

variate correlation (H. Lin et al. 2008; Rashid et al. 2011)

using the RMM1 and RMM2 indices computed from

eachmodel hindcast followingNeena et al. (2014). From

Figs. 9a and 9b it is evident that, when the hindcasts are

initiated from active MJO conditions, the relative skill

of a model for the EPAC ISV is related to its skill in

predicting the MJO (the correlation between the red

bars in Figs. 9a and 9b is 0.85). In four models—

ABOM1, ABOM2, ECMWF, and JMAC—the MJO

prediction skill and the EPAC ISV hindcast skill are

significantly lower in hindcasts initiated from weak or

quiescent MJO conditions (Figs. 9a,b, blue bars) as

compared to those from hindcasts initiated during active

MJO conditions. In the other four models (CMCC,

SNUC, CFS1, and CFS2), even though the MJO pre-

diction skill associated with quiescent MJO initial con-

ditions is lower than that associated with active MJO

conditions, the EPAC ISV prediction skill seems largely

unaffected by the presence or absence of MJO during

hindcast initiation. One possibility is that in the former

four models the EPAC ISV is mainly forced by the

global MJO signal and in the latter four models the

EPAC ISV mode is more locally driven. Another pos-

sibility could be that the local generation mechanisms

for the EPAC ISV are poorly represented in the former

set of models or the teleconnection mechanisms across

the Pacific are poorly represented in the latter set of

models, or both.

This above hypothesis is further tested by performing

a simple analysis of the relationship between the EPAC

ISV and the western Pacific precipitation variability in

the model hindcasts. For each model, for each lead day

of hindcast, correlations between the PC1hcast and

hindcast precipitation anomalies were computed at ev-

ery grid point in the equatorial domain (158S–258N,

1208E–808W). If, as suspect, in the latter set of models

(CMCC, SNUC, CFS1, and CFS2) the EPAC-ISV

evolution is less dependent on the west Pacific MJO,

the correlation fields should give some indication of this

by being lower in these models. The spatial distribution

of the multimodel average correlation coefficient values

for the hindcasts from the two sets of models are shown

in Figs. 10a and 10b. The spatial distribution of corre-

lation coefficients based on the hindcasts fromABOM1,

ABOM2, ECMWF, and JMACmodels, at 1-, 3-, 6-, and

9-day hindcast leads are shown in Fig. 10a, and similarly

for the CMCC, SNUC, CFS1, and CFS2 models in

Fig. 10b. In Fig. 10a, a band of negative correlation

values can be seen extending from the western to the

central Pacific. The slightly weaker negative correlation

values over the western and central Pacific in Fig. 10b

gives some indication of a weaker relationship between

the eastern and western Pacific in the hindcasts from the

latter four models (Fig. 10b). The differences are evi-

dent even at 9-day lead. While noteworthy, it is not

possible to make any comprehensive conclusions on the

nature of the EPAC ISV–MJO relationship in the

models, based on the correlation fields of daily hindcast

anomalies. Nevertheless, the analysis signals the need to

carry out detailed investigations of theMJO–EPAC ISV

relationship in GCMs and it also indicates the impor-

tance of such understanding for improving EPAC ISV

predictions.

FIG. 9. (a) Average individual hindcast prediction skill for PC1 in

the eightmodels for hindcasts initiated from activeMJO conditions

(RMM amplitude .1.2; red bars) and quiescent MJO conditions

(RMM amplitude,0.8; blue bars). (b) TheMJO prediction skill in

the eight models for the same set of cases considered in (a). In each

panel, the error bars represent the 95% confidence estimates for

the correlation-based prediction skill.
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7. Conclusions

For the first time, the dynamical prediction skill and

predictability for the dominant summer ISV mode over

the eastern Pacific are explored by analyzing hindcast

data from eight coupled models that participated in the

ISVHE. The leading ISV mode over the EPAC was

isolated through a multivariate EOF analysis of pre-

cipitation and U850. The results indicate a smaller lead

time of dynamical prediction skill for the EPAC ISV

than for the boreal winter MJO (15–25 days), with pre-

diction skill ranging from 10 to 14 days in the eight

models analyzed. The predictability for the leading

EPAC ISV mode was further explored using perfect

model assumption and it was estimated to be in the 20–

30-day range. Previous analysis of EPAC ISV simula-

tions in dynamic models and the results from this study

indicate that faithful simulations and prediction of the

EPAC ISV still remain a great challenge for present-day

GCMs. The convective to subsidence transition phase

seems to have a higher predictability than the sub-

sidence to convective phase transition over the EPAC

domain, implied by the higher prediction skill associated

with hindcasts initiated from convective phase of EPAC

ISV and considerations of the relevant forecast lead

times and ISV time scale. The EPAC ISV–MJO re-

lationship was also explored using the leading EPAC

ISV modes and the RMM indices. It was noted that

a major fraction (68%) of EPAC ISV convective events

occurred in conjunction with active MJO conditions and

the seesaw structure of convection was apparent over

the eastern and western Pacific domains. The EPAC

ISV during quiescent MJO conditions was found to be

weak and more localized. The prediction skill of the

EPAC ISV associated with these contrasting MJO

conditions was explored in the eight model hindcasts. In

four of the eight models, higher EPAC ISV prediction

skill was associated with hindcasts initiated during active

MJO conditions as compared to the skill in hindcasts

initiated from quiescent MJO conditions. In the other

models the skill associated with hindcasts initiated from

quiescent MJO conditions was as high as that associated

with active conditions. We speculate that, in the models

that exhibit EPAC ISV prediction skill sensitivity to

MJO strength, at least in the hindcast mode, the EPAC

ISV might be mainly forced by the global MJO signal or

the mechanisms for local generation of the EPAC ISV

might not be in place. And, for the other four models,

local convection–circulation feedback might have an

upper hand over MJO forcing in maintaining the EPAC

ISV, or the teleconnection mechanisms for east–west

Pacific communications might not be adequately rep-

resented. Again, there is the possibility of other remote

forcing mechanisms that are not yet explored. Similar to

the results for EPAC ISV simulation in different dy-

namic models (Jiang et al. 2012), the behavior of model

FIG. 10. Spatial distribution of correlation coefficients between PC1hcast and hindcast precipitation anomalies over

the equatorial domain (158S–258N, 1208E–808W), at 1-, 3-, 6-, and 9-day hindcast leads: (a) multimodel average

correlations based on the ABOM1, ABOM2, ECMWF, and JMAC model hindcasts and (b) multimodel average

correlations based on the CMCC, SNUC, CFS1, and CFS2 model hindcasts.
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hindcasts in this study also point to the fact that the

representation of EPAC ISV–MJO relationship might

be significantly different in different dynamical models.

Understanding this dynamic link and quantifying

the relative roles of MJO forcing and local effects in the

maintenance of EPAC ISV would be crucial for the

simulation and prediction of this mode. The EPAC ISV

is also known to exhibit a 16-day lag (or out of phase)

relationship with the boreal summer ISV mode over

northern Indian Ocean (Wang et al. 2006; Moon et al.

2013), which would again be an interesting aspect to

explore in EPAC ISV research. The limited prediction

skill for the EPAC ISV in dynamic models, a promising

20–30 days of predictability, and the underexplored re-

lationship with the MJO and other large-scale modes

call for focused efforts in simulating and predicting the

EPAC ISV mode in dynamic models.
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