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ABSTRACT

The Madden–Julian oscillation (MJO) represents a primary source of predictability on the intraseasonal time

scales and its influence extends from seasonal variations toweather and extreme events.While the last decade has

witnessed marked improvement in dynamical MJO prediction, an updated estimate of MJO predictability from

a contemporary suite of dynamic models, in conjunction with an estimate of their corresponding prediction skill,

is crucial for guiding future research and development priorities. In this study, the predictability of the boreal

winterMJO is revisited based on the Intraseasonal Variability Hindcast Experiment (ISVHE), a set of dedicated

extended-range hindcasts from eight different coupled models. Two estimates of MJO predictability are made,

based on single-member and ensemble-mean hindcasts, giving values of 20–30 days and 35–45 days, respectively.

Exploring the dependence of predictability on the phase of MJO during hindcast initiation reveals a slightly

higher predictability for hindcasts initiated from MJO phases 2, 3, 6, or 7 in three of the models with higher

prediction skill. The estimated predictability of MJO initiated in phases 2 and 3 (i.e., convection in Indian Ocean

with subsequent propagation acrossMaritimeContinent) being equal to or higher than otherMJOphases implies

that the so-calledMaritime Continent prediction barrier may not actually be an intrinsic predictability limitation.

For most of the models, the skill for single-member (ensemble mean) hindcasts is less than the estimated pre-

dictability limit by about 5–10 days (15–25 days), implying that significantly more skillful MJO forecasts can be

afforded through further improvements of dynamical models and ensemble prediction systems (EPS).
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1. Introduction

In the tropics, between the weather and the seasonal

time scales there is a dominant mode of intraseasonal

variability known as the Madden–Julian oscillation

(MJO; Madden and Julian 1971; Zhang 2005). It repre-

sents a primary source of predictability on the intra-

seasonal time scales and also modulates and influences

different scales of atmospheric and oceanic variabil-

ity over the tropics and extratropics (Maloney and

Hartmann 2000a,b; Jones and Carvalho 2002; Zhang

and Gottschalck 2002; and many others). Hence, the

effective prediction of MJO can provide insight into the

statistical evolution or even extend the predictive skill of

a wide range of phenomena from synoptic scale to the

climate scale. This understanding has given significant

impetus to better simulate and forecast the MJO using

both dynamical and statistical methods (Waliser 2011).

Initial efforts toward MJO prediction using dynamical

models were marginally successful, with prediction skill

ranging from 7 to 10 days (e.g., Jones et al. 2000; Seo

et al. 2005), much less than that of the statistical models,

which exhibited up to 2weeks of prediction skill (e.g., Lo

and Hendon 2000; Wheeler andWeickmann 2001; Jiang

et al. 2008). On the other hand, attempts toward esti-

mating the predictability of the MJO indicated a limit

around 4 weeks, albeit with the models that were only

marginally successful at replicating the MJO (e.g.,

Waliser et al. 2003; Reichler and Roads 2005; Waliser

2006a). Recent predictability estimates by Pegion and

Kirtman (2008a) indicate even longer predictability for

the MJO in coupled simulations.

Pastmultimodel assessments ofmodel performance for

theMJO (e.g., Slingo et al. 1996; Lin et al. 2006; Kim et al.

2009; Zhang et al. 2013) have indicated that inadequacies

in cumulus parameterization schemes (e.g., Maloney and

Hartmann 2001; Liu et al. 2005; Vitart et al. 2007), coarse

vertical resolution (Slingo et al. 1996; Inness et al. 2001),

and lack of air–sea coupling (e.g., Hendon 2000; Fu et al.

2007; Woolnough et al. 2007) were some of the factors

limiting the simulation of theMJO byGCMs. In addition

to these factors,MJOprediction using numerical weather

prediction models are further affected by the uncer-

tainties in initial conditions arising from observational

errors and errors in the assimilation systems (Agudelo

et al. 2009; Fu et al. 2011). Through better model pa-

rameterizations, increased vertical resolution, improved

assimilationmethodology and observation availability, and

in some cases the inclusion of ocean coupling (e.g., Fu et al.

2003; Fu and Wang 2004; Woolnough et al. 2007; Zheng

et al. 2004; Pegion and Kirtman 2008b), commendable

improvements have been made in the past decade inMJO

simulation and prediction (Waliser 2011). Specifically, the

studies by Vitart and Molteni (2010), Rashid et al. (2011),

Seo et al. (2009), and Kang and Kim (2010) have shown

that skillful prediction of the boreal winter MJO can be

made up to 2–3 weeks in advance.

The developments highlighted above call for a sys-

tematic evaluation of the present-day MJO dynamical

prediction capabilities, particularly in light of contin-

ued and emerging interests in subseasonal prediction

(e.g., Vitart et al. 2012; Brunet et al. 2010; Moncrieff

et al. 2012) and gains made in model fidelity (Zhang

et al. 2013; Zhang and Van den Dool 2012). While as-

sessments of MJO forecast skill are often performed by

different modeling centers, the forecast set ups, ap-

proaches for isolating MJO signals, and prediction skill

metrics are often diverse which do not afford a com-

prehensive and uniform assessment. To address this

need, the Asian Pacific Climate Center (APCC), the

World Climate Research Programme (WCRP)–World

Weather Research Programme (WWRP)/The Ob-

serving System Research and Predictability Experi-

ment (THORPEX) Year of Tropical Convection

(YOTC) Project and MJO Task Force, and the Na-

tional Oceanic and Atmospheric Administration

(NOAA) Climate Test Bed have developed and sup-

ported the Intraseasonal Variability Hindcast Experi-

ment (ISVHE), which called for an extended-range,

multimodel hindcast dataset specifically targeting at

the ISV. The broad objectives of the ISVHE are to

assess the forecast skill and predictability of the ISV

including the MJO and related phenomena, in a multi-

model framework, and to develop optimal strategies

for multimodel ensemble (MME) prediction of the

ISV. In a companion study, J.-Y. Lee et al. (2014, un-

published manuscript) provide an overview of the

ISVHE and analyses the hindcast skill of the partici-

pating models. Specifically, they evaluate the pre-

diction skill of the boreal winter MJO using the ISVHE

multimodel hindcasts based on the real-time multi-

variate MJO (RMM) indices (Wheeler and Hendon

2004, hereafter WH04). The possibility of multimodel

ensemble prediction for the MJO is also explored in

that study, with the result that even simply constructed

multimodel ensembles were found to yield a prediction

skill out to 4 weeks.

In contrast to examinations of prediction skill, there

are fewer attempts to characterize the predictability of

the MJO, particularly using contemporary general cir-

culation models (GCMs; Waliser 2011). One of the

earlier attempts for estimating MJO predictability was

made by Waliser et al. (2003) using ‘‘perfect model

forecasts’’ with the National Aeronautics and Space

Administration (NASA) Goddard Laboratory for At-

mospheres (GLA) atmospheric GCM (AGCM). It was
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demonstrated that, for 200-hPa velocity potential, the

MJO predictability extended out to about 25–30 days

and to about 10–15 days for precipitation. Later,

Reichler and Roads (2005), using the National Centers

for Environmental Prediction (NCEP) seasonal forecast

model, estimated the MJO predictability in 200-hPa

velocity potential field to be about 4 weeks when the

model, initial, and boundary conditions were all perfect.

However, these estimates were based on AGCMs with

marginal ability to represent the MJO (Waliser 2006a).

Also, in these studies, the predictability of MJO was

analyzed in different dynamical fields (e.g., winds and

precipitation), and, as in the case of prediction skill es-

timates, diverse approaches were often adopted for

isolating the MJO signal. Later studies (e.g., Fu et al.

2007, 2008; Pegion and Kirtman 2008a) that investigated

the role of air–sea coupling onMJO predictability, using

different coupling configurations, revealed a longer

MJO predictability in fully coupled atmosphere–ocean

models. Based on an estimate of predictability involving

ensemble means, using the NCEP Climate Forecast

System (CFS; Saha et al. 2006), Pegion and Kirtman

(2008a) showed that the predictability of MJO extends

beyond 45 days. These predictability estimates based on

individual GCMs were dependent on how well the MJO

was captured by the models. The present-day dynamical

models have shown marked improvement in the repre-

sentation of the MJO, and hence it is worth an attempt

to exploreMJO predictability in present-day GCMs and

across different GCMs.

In the present study, we explore and characterize the

predictability of the boreal winter MJO based on the

ISVHE coupled model hindcasts using a common

methodology to quantify the gap between the present-

day prediction skill and predictability of the MJO. The

details of the ISVHE dataset and the methodology for

isolating the MJO from model hindcasts and estimating

its predictability are provided in sections 2 and 3. The

predictability estimates from the eight models, including

the dependence of predictability on the amplitude and

phase of MJO at hindcast initiation, are presented in

section 4a. Analysis of whether the primary and sec-

ondary MJO events (Matthews 2008; Straub 2013) have

different predictability is also explored in this section.

The MJO prediction skills of the different models are

compared against the predictability estimates in section

4b. A brief analysis of the ability of the different en-

semble prediction systems (EPS) to take into account

the total uncertainties from initial conditions and in-

ternal dynamics, and their efficiency in improving the

deterministic prediction skill is illustrated in section 4c.

A summary and conclusions from the present study are

provided in section 5.

2. Hindcast data

The ISVHE was launched in 2009 and is jointly sup-

ported by the APCC, NOAA, Climate Variability and

Predictability (CLIVAR) Asian–Australian Monsoon

Panel, YOTC and MJO Task Force, and the Scientific

Steering Committee of Asian Monsoon Years (2007–12).

The ISVHE was designed to examine tropical intra-

seasonal variability as a whole, including the boreal

winter MJO and the boreal summer intraseasonal oscil-

lation (ISO) (e.g.,Waliser 2006b). It consists of two sets of

experiments: 1) long ‘‘control’’ simulations (20 yr) to ex-

amine the participating models ability to represent the

intrinsic ISV modes and 2) hindcasts of at least 45-day

durations, initiated on the 10th day of every calendar

month (such that a large number of independent MJO

events are captured) and spanning about 20 yr. All the

participating models have mostly adhered to the guide-

lines set down by the ISHVE in generating the hindcasts.

However, there are some differences in the ensemble

generation approaches followed by different modeling

centers and in the number of ensembles. While some

modeling centers used time-lagged initial conditions

(Hoffman and Kalnay 1983) for ensemble generation,

others adopted the singular vector (Buizza and Palmer

1995;Molteni et al. 1996) or bred vector (Toth andKalnay

1993, 1997) approaches. In this study,wehave analyzed the

hindcasts for the winter season (November–March) from

eight coupled models from six centers, which include two

versions of theAustralian Bureau ofMeteorology coupled

model (ABOM1 and ABOM2), two versions of the

NCEP/Climate Prediction Center (CPC) coupledmodels

(CFS1 and CFS2), the European Centre for Medium-

Range Weather Forecasts (ECMWF) model, the Ja-

pan Meteorological Agency (JMA) coupled model

(JMAC), the coupled model of Euro-Mediterranean

Center on Climate Change (CMCC), and the Seoul

National University (SNU) coupled model (SNUC).

Table 1 gives the details of hindcast datasets from the

eight models. Further details of the ISVHE and the

participatingmodels can be found in J.-Y. Lee et al. (2014,

unpublished manuscript). Daily averaged outgoing long-

wave radiation (OLR) data from NOAA polar-orbiting

series of satellites (Liebmann and Smith 1996) and wind

fields from the NCEP–National Center for Atmospheric

Research (NCAR) reanalysis dataset (Kalnay et al. 1996)

represent the observed fields.

3. Methodology

To estimate predictability or prediction skill of theMJO,

it is necessary to isolate the MJO signal. Earlier ap-

proaches for isolating the MJO in model hindcasts often

involved applying bandpass filtering after appending
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observed data or model control simulation data before the

start of the model hindcasts (e.g., Jones et al. 2000). After

the introduction of the RMM indices byWH04, which are

based on an empirical orthogonal function (EOF) analysis

of the combined fields of equatorially averaged 850- and

200-hPa zonal wind (U850 and U200), and NOAA OLR,

isolation of the MJO mode became possible without re-

lying on time filtering. Recently, different variations of the

WH04 method were used in MJO prediction studies

(Vitart et al. 2007; Lin et al. 2008; Seo et al. 2009). While

some studies defined the RMM indices based on the ob-

served MJO modes, others defined the indices based on

the intrinsicMJOmodes derived frommodel control runs.

Since the intrinsic MJO-like variability differs greatly in

the ISVHE participating models, the second approach

would not suit our objective of evaluating the MJO pre-

dictability using a common metric. Hence, we use the

observed MJO mode following WH04 to isolate the MJO

signals in the model hindcasts (Gottschalck et al. 2010;

Sperber and Waliser 2008).

Starting from the daily hindcast fields of OLR, U850,

andU200 of anymodel, the correspondingmodel hindcast

climatologies are removed to obtain the bias corrected

anomaly fields. Following the WH04 methodology, the

interannual variability is further removed by subtracting

the previous 120-day mean (computed by appending the

corresponding observed anomaly fields before the hind-

cast anomaly fields) from each day’s anomaly fields

(Gottschalck et al. 2010).We have verified that removing

or retaining the interannual variability in the anomalies does

not qualitatively affect the predictability estimates made in

the study. TheOLR,U850, U200 anomalous fields are then

latitudinally averaged between 158S and 158N and normal-

ized by their respective zonal average values of temporal

standard deviations (again obtained from the observed

fields). Then the combined fields are projected on to the

WH04 combined EOF modes to obtain the MJO principal

component time series, RMM1 and RMM2, which repre-

sent the MJO signal in the model hindcast. The observed

RMM1 and RMM2 values are computed in a similar way

using observed fields of OLR, U850, and U200. Both the

observed andhindcastRMMindices are further normalized

by the standard deviation of the observed RMM indices.

Two approaches are adopted for measuring the pre-

dictability of MJO in the hindcasts. Both estimates of

predictability are based on the perfectmodel assumption.

TABLE 1. Details of hindcast data from the eight models used in this study.

Model(s) Hindcast details

Ensemble size nk

(ensemble generation

method)

ABOM1 (Colman et al.

2005)

Predictive Ocean–Atmosphere Model

for Australia (POAMA) 1.5

[Australian Community Ocean

Model, version 2 (ACOM2), and

Bureau of Meteorology Research

Centre (BMRC) Atmospheric

Model (BAM3)]

160-day hindcasts, 1980–2006:

initialized 1st day of every

month

10 (6-h lagged atmospheric

initial conditions)

ABOM2 (Cottrill et al.

2013)

POAMA 2.4 (ACOM2 and BAM3) 100-day hindcasts, 1989–2009:

initialized 1st and 11th day of

every month

11 (perturbations using

coupled bred vectors)

CMCC (Scoccimarro

et al. 2011)

ECHAM5 and Oc�ean Parall�elis�e 8.2

(OPA8.2)

59-day hindcasts, 1989–2007:

initialized 1st, 11th and 21st day

of every month

5 (1-day lagged initial

conditions)

ECMWF (Alves et al.

2004; Vialard

et al. 2005)

Integrated Forecast System (IFS)

and Hamburg Ocean Primitive

Equation Model (HOPE)

56-day hindcasts, 1989–2008:

initialized 1st day of every

month

5 (different oceanic initial

conditions)

JMAC (JMA 2007;

Ishikawa et al. 2005)

JMA coupled GCM (CGCM) 61-day hindcasts, 1989–2008:

initialized every 15th day

5 (perturbations using

singular vectors)

CFS1 (Saha et al. 2006) NCEP/CPC CFS, version 1 [Global

Forecast System (GFS) and

Modular Ocean Model version 3

(MOM3)]

70-day hindcasts, 1981–2008:

initialized 2nd, 12th, and 22nd

day of every month

5 (1-day lagged initial

conditions)

CFS2 (Saha et al. 2014) NCEP/CPC CFS, version 2 (GFS and

MOM3)

44-day hindcasts, 1999–2010:

Initialized 1st, 11th, and 21st day

of every month

4 (6-h lagged initial

conditions)

SNUC (Kug et al. 2008) SNU coupled model (SNU AGCM

and MOM3)

45-day hindcasts, 1990–2008:

Initialized 1st, 11th, and 21st day

of every month

4 (6-h lagged initial

conditions)
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By perfect model forecasts or ‘‘identical twin forecasts,’’

we mean the forecasts made using the same model from

a control initial condition and a ‘‘perturbed’’ initial con-

dition (obtained by perturbing the control initial condi-

tion) (e.g., Lorenz 1982). In the first method, which we

call the single-member estimate, the RMM1 and RMM2

values from any given hindcast ensemble member are

considered as the control MJO forecast and those from

every other ensemble member are considered as per-

turbed MJO forecasts. The divergence of these MJO

trajectories is calculated as a function of forecast lead.

The error is defined as the difference in forecast RMM1

and RMM2 between the hindcast deemed control and

each other ensemble member, as a function of lead time.

The error estimate formulation includes the contributions

from both RMM1 errors as well as the RMM2 errors [see

Eq. (1)] and is similar to the bivariate MJO metric for

prediction skill estimation employed by Lin et al. (2008).

Predictability is defined as the lead time at which the

difference or error from the perfect model hindcasts be-

comes as large as the average MJO amplitude in the

hindcasts. Thismethod is similar to themethodology used

in earlier studies (e.g.,Waliser et al. 2003; Liess et al. 2005;

Fu et al. 2007, 2008; Pegion and Kirtman 2008a), except

we use the RMMs of the hindcast in place of the time

filtering of specific fields adopted in that study.

Consider a model that produces J day-long ensemble

hindcasts (ensemble size nk) for N different initial

conditions spanning the November–March period of nyr

years. For a particular initial condition i at lead time j,

the error (the difference in RMM values for any two

ensemble member hindcasts k1 and k2) is defined as

E2
ij 5 (RMM1

k
1

ij 2RMM1
k
2

ij )
2

1 (RMM2
k
1

ij 2RMM2
k
2

ij )
2 . (1)

Here k1 represents the control and k2 represents the

perturbed forecast. The signal is computed from all the

control forecasts (k1) and defined as the average MJO

variance in a 51-day sliding window, as a function of

lead time. The observed RMM values prior to hindcast

initiation day were also used in the sliding window

computation of MJO variance. A 51-day window was

chosen to cover a full MJO cycle; however, there is not

much sensitivity of the signal estimate on the window

size. The signal corresponding to a particular initial

condition i at lead time j is computed by setting L5 25

in Eq. (2),

S2ijk
1
5

1

2L1 1
�
L

t52L

(RMM1
k
1

ij1t)
2 1 (RMM2

k
1

ij1t)
2 . (2)

The mean-square error for each lead day j is computed

over a totalN3m1 cases [m1 control–perturbed (k1–k2)

pairs for a given initial condition, overN different initial

conditions]. For the single-member predictability esti-

matem1 takes the value of nk2 1 factorial when all the

ensemble members are initialized the same day, while it

counts only those ensemble pairs initialized within a

maximum separation of 1 day when the ensemble mem-

bers are initialized from time-lagged initial conditions,

hE2
j i5

1

N3m1

�
N

i51
�

m
1
perfect model pairs

E2
ij , (3)

and the mean signal for each lead day j is computed over

a total N 3 nk cases,

hS2j i5
1

N3 nk
�
N

i51
�
nk

k
1
51

S2ijk
1
. (4)

The single-member estimate of predictability is de-

fined as the lead time at which the mean-square error

becomes as large as the mean signal: in other words, the

time lead at which small errors in initial conditions

would become as large as the modeled standard de-

viation of the MJO.

While thismethod estimates the predictability from the

individual hindcasts, we also attempt to estimate the

predictability of ensemble-mean hindcasts using a slight

alteration. Pegion and Kirtman (2008a) have shown that

the predictability of MJO associated with ensemble

means is longer than the predictability associated with

individual ensemble members. In the second method,

which we call the ensemble estimate, in the place of

measuring the error growth between two ensemble

member forecasts, the error growth is estimated for a

single ensemble member (control) and the ensemble

mean over all the other ensemble members (perturbed).

In Eq. (2), the superscript k2 would represent theRMM1

and RMM2 values averaged over all the ensemble

members other than k1. In computing the mean-square

error,m1 takes the value of ensemble size nk. The signal

estimate is same as that for the first method. To be con-

sistent with the predictability estimation, the average

MJOhindcast skill is alsomeasured in a similar way as the

predictability estimate, substituting the observed RMM

values in place of k2 in Eq. (1). Signal is computed from

the observed RMMs using Eq. (2). Ensemble-mean

hindcast skill is computed in a similar way using only the

ensemble-mean hindcast (averaged over all ensemble

members). The overall approach described above is

driven by this study’s primary objective of estimating the

predictability of the MJO, with a secondary objective of

15 JUNE 2014 NEENA ET AL . 4535



comparing the predictability estimate from each model

with its corresponding prediction skill but using a com-

mon framework for the comparison.

4. Results and discussion

a. MJO predictability estimates

The predictability of the MJO was examined for the

eight models using the two approaches described above.

In Fig. 1, the average error (blue: single member

method; black: ensemble method) and average signal

estimates (red) are shown as a function of lead time for

all the hindcasts initiated from ‘‘strong’’ MJO events.

This means that in computing the average error and

average signal for any given model, hindcasts were only

included if the observed MJO amplitude, defined as

(RMM121RMM22)1/2, was greater than 1.0 on day 0 of

the hindcast. Also, to ensure that the predictability es-

timates are not influenced by a bias in relative number of

cases in each MJO phase, an equal number of hindcasts

n were included in the predictability estimation for each

pair of MJO phases (phases 8 and 1, 2 and 3, 4 and 5, and

6 and 7). Here, n was determined from the minimum of

the number of hindcasts occurring in the four groups.

The table in the bottom right corner of Fig. 1 gives the

total number of cases [N in Eqs. (3) and (4)] used in

predictability estimation, whereN5 4n. To give an idea

of how well the MJO signal in the model hindcasts

compares with the observed, the day-0 value of the av-

erage signal computed from observed RMMs is in-

dicated by a solid red circle in each panel of Fig. 1. Based

FIG. 1. Average error and signal estimates for the eight models for strong MJO initial conditions. Saturation of the blue solid error

growth curve (single-member estimate) with respect the signal (red solid) marks the MJO predictability for individual forecasts (denoted

by the black vertical line along with the corresponding number of forecast lead day in red in each panel) and saturation of the black solid

error growth curve (ensemble-mean estimate) with respect the signal (red solid) marks the MJO potential predictability for ensemble-

mean forecasts. Also shown as dashed lines are the 95% confidence estimates of error and signal. The solid red circle in each panel

represents the signal estimates based on observations. The table at the bottom-right gives the number of cases (N), corresponding to strong

MJO events at the time of initiation, used in the predictability estimates for each model.
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on Fig. 1, the single-member estimate of MJO pre-

dictability is obtained from the lead time at which the

(blue) error curve becomes as large as the (red) signal;

similarly, the ensemble estimate ofMJOpredictability is

obtained as when the (black) ensemble error curve be-

comes as large as the (red) signal. In six of the eight

models (except ABOM2 and CFS1), for both the single-

member and ensemble estimates, exponential error

growth is evident with a slower error growth phase for

the first few days of hindcast followed by a phase of

faster error growth. The single-member predictability

estimates of these six models exhibits a range of 24–30

days. In the other two models, ABOM2 and CFS1, the

error growth curve has a more linear character, with

abrupt error growth starting from day 1. The resulting

estimate of single-member predictability from these two

models is slightly lower, around 20 days. The differences

in the error growth among different models with very

similar values of initial error indicate that the error

growth on the intraseasonal time scale is not dependent

on the initial conditions alone but also could be governed

by the modeled processes themselves. In all the models,

the predictability estimate for the ensemblemean ismuch

higher than the estimate using single members. The en-

semble estimate of predictability is more than 45 days for

ABOM1, ABOM2, and ECMWF and around 35–45 days

for all other models.

Figure 2 illustrates the same information as Fig. 1 but

for cases of weakMJO events: namely, based on all cases

when the MJO amplitude is less than 1.0 on day 0 of the

hindcast. Again, the table in the bottom right corner of

Fig. 2 gives the total number of cases [N in Eqs. (3) and

(4)] associated with weak MJO initial conditions. It is

seen that both the single-member and ensemble esti-

mates of predictability are shorter than their respective

counterparts for strongMJO cases, as shown in Fig. 1. The

single-member predictability estimates are on the average

lower by around 5–10 days for weak MJO events in all

models except ABOM1, while for weak MJO cases the

average ensemble estimate of predictability is around 20–

30 days. The dependence of estimated predictability on

MJO amplitude was also noted by Waliser et al. (2003).

FIG. 2. As in Fig. 1, but for model hindcasts from weak MJO initial conditions.
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Although the MJO is observed as a globally propa-

gating signal in circulation, the zonal asymmetries in the

surface boundary conditions, interactions, and character

of convective signature (e.g., Hendon and Salby 1994)

suggest the possibility that the MJO predictability may

depend on its phase. Lin et al. (2008) demonstrated such

a dependence on the phase of the MJO at initiation in

their estimates of prediction skill. They showed that

forecasts initialized with active convection over tropical

Africa and the Indian Ocean sectors (phases 1–3) have

higher skill than those initialized from other phases.

Such an initial-phase dependence, however, was not

clear in a similar study by Rashid et al. (2011). Hence,

the dependence ofMJO predictability on the location of

MJO convection (identified from the eight RMM pha-

ses) at day 0 of hindcast is further examined using the

single-member estimate method (Fig. 3a). While no

significant dependence of predictability on initial MJO

phase is found in most of the models examined here, the

ABOM1, ABOM2, and ECMWF models exhibit some

sensitivity of predictability on the initial MJO phase

(Fig. 3a). For ABOM1 and ABOM2, the predictability

is found to be slightly higher when initialized fromMJO

phases 2, 3, 6, and 7 as compared to those from phases 1,

8, 4, and 5. The difference in predictability between

these two groups is significant at the 95% confidence

level based on a Student’s t test. For the ECMWFmodel,

hindcasts initialized fromMJO phase 6 or 7 tend to have

significantly higher predictability than the rest (95%

confidence). The higher predictability for hindcasts ini-

tialized fromMJO phases 2, 3, 6, and 7 may be related to

the stronger MJO amplitude over the Indian Ocean and

western Pacific. Another aspect of interest is that most

models exhibit predictability beyond 20 days for hind-

casts initiated from phases 2 and 3: that is, hindcasts

involving convection in the Indian Ocean at lead 0 days

and propagation into the western Pacific over the sub-

sequent 2–4 weeks. Both the simulation and forecasting

of MJO convection propagation across the Maritime

Continent have been found to be a hurdle for the

present-day GCMs (Inness et al. 2003; Inness and Slingo

2006; Vintzileos and Pan 2007) and it has been con-

templated whether this difficulty arises from common

modeling deficiencies or whether an actual ‘‘Maritime

Continent prediction barrier’’ exists. The fact that in all

the models the predictability associated with hindcasts

initiated from phases 2 and 3 is as good as or even higher

than the predictability associated with other MJO pha-

ses implies that the Maritime Continent prediction

barrier might not be an actual predictability limitation.

An examination of the differences inMJO predictability

for different target MJO phases would shed more light

on this problem. However, it would require a more ex-

tensive hindcast experiment setup, ideally with ex-

tended hindcasts initiated from each calendar day.

Next we examine whether the MJO predictability

estimates obtained from Fig. 1 is affected by the nature

of the MJO events represented in the hindcast initial

conditions. By ‘‘nature,’’ we mean whether the MJO

event is part of a preceding MJO cycle (secondary

events) or it marks the initiation of a new MJO cycle

unrelated to any previous event (primary events). There

have been very few attempts to objectively identify

primary and secondary MJO events from observations

(e.g., Matthews 2008; Straub 2013). Of these, Straub

(2013) classified the observed MJO for the 1979–2012

period into primary, intensification, and secondary

events based on the RMM indices. Since we have used

the RMM indices for the predictability estimates in this

study, we adopt the Straub (2013) classification to

compare the predictability of primary and secondary

MJO events in the ISVHE hindcasts. According to

Straub (2013), a primary MJO event is defined as when

the RMM amplitude becomes greater than 1.0 and re-

mains so through four subsequent RMM phases, after

being preceded by a period of,1.0 amplitude for at least

7 days without any counterclockwise motion of the

RMM indices inside the unit circle. The final criterion

ensures that there were absolutely no MJO precursor

signals for a primary event. A secondary MJO event is

FIG. 3. MJO predictability (days) estimates for the eight models

for (a) hindcasts initiated from different MJO phases and (b) pri-

mary and secondaryMJO events. The error bars represent the 95%

confidence interval for the predictability estimates.
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identified as when the RMM index enters a particular

phase with amplitude greater than 1.0 after having

propagated through at least two prior phases with am-

plitude greater than 1.0 and subsequently propagates

through two successive phases with the greater than 1.0

amplitude. The number of primary initiation dates

identified from observations was very few, as compared

to the secondary and intensification cases. To have a

better sample size for our estimates we have redefined

the primary events by relaxing the final criteria used

in Straub (2013). When estimating the predictability

associated with primary and secondary MJO events

based on each model, the error and signal were calcu-

lated by including only those hindcasts whose day

0 falls within the 65-day interval of the primary and

secondary initiation dates identified from observa-

tions. The ABOM2, ECMWF, JMAC, and CFS1 mod-

els display a higher predictability for secondary MJO

events as compared to primary events (Fig. 3b). The

differences in predictability for primary and secondary

MJO events in these models were found to be signifi-

cant at 95% confidence level using a Student’s t test.

The other four models do not show a significant dif-

ference in predictability for primary and secondary

MJO events.

b. Prediction skill versus predictability

The MJO prediction skill of a given model is a mea-

sure of how well the model is able to mimic the observed

MJO evolution and is limited by both the deficiencies in

model formulation as well as the errors in prescribing

the initial conditions. If we discard the errors result-

ing from model deficiencies (and thus have a perfect

model), the maximum attainable prediction skill, now

only sensitive to the errors in initial conditions, defines

MJO predictability, which was addressed above. For

each model, the MJO predictability estimates (from

Fig. 1) are contrasted against their respective MJO pre-

diction skill estimates (single member and ensemble

mean) inFig. 4. To readily compare our predictability and

prediction skill estimates, the methodology is identical:

except in the predictability case the control is a given

ensemble member while in the prediction skill case the

control is the observation. Please refer to sections 2 and 3

for details of prediction skill estimation. The ensemble-

mean prediction skill (hatched bars) is higher than the

average single-member prediction skill (black bars) in

all models. This may be because ensemble averaging

helps to remove some of the errors attributable to at-

mospheric instabilities that dominate the single-member

(i.e., deterministic) forecasts. However, the extent to

which the effects of initial uncertainties are reduced de-

pends on the fidelity of the EPS. A 65-day range for the

single-member (ensemble) estimate of predictability is

shown as the tan (gray) shaded area in Fig. 4.

Of the eight models, the ECMWF model shows the

highest single-member prediction skill for MJO with

useful skill up to 20 days and theCFS1model has the least

skill of about 6 days. All the other models exhibit skill

ranging from 12 to 16 days. The upper limit of single-

member predictability ofMJO inmost of the models falls

in between 20 and 30 days. The predictability of MJO for

ABOM2 and CFS1 has a lower range around 15–25 days.

The ensemble-mean prediction skill is again highest for

ECMWF (28 days) and ABOM2 (24 days) and is in the

15–20-day range for most of the other models. While the

ensemble estimate of predictability is around 35–45 days

in most models, ECMWF and ABOM2 exhibit slightly

higher estimates of more than 45 days. The lowest range

for ensemble estimate of predictability is observed in

JMAC, around 30–40 days. These results are encouraging

since it indicates that most of the present-day dynamic

models have the scope for improving their MJO pre-

diction skills by up to 2 weeks before reaching the upper

limit of predictability. The large gap separating the single-

member and ensemble estimates of predictability implies

that effective strategies for ensemble prediction would

play a major role in the improvement of MJO forecasts.

c. Spread–RMSE relation in different EPS

While the skill of the ensemble-mean forecast over the

single-member skill would give a measure of the skill of

the EPS, it is equally important to measure the un-

certainty information contained in the ensemble member

forecasts. Different approaches and metrics are used

for evaluating the uncertainty information contained

in ensemble forecasts [for a review, see Candille and

Talagrand (2005)]. Evaluating the statistical consistency of

the ensemble is one of the simpler approaches (Murphy

FIG. 4. The single-member prediction skill (black bar) and

ensemble-mean prediction skill (hatched bar) estimates (days) for

MJO for the eight models are shown along with their respective

single-member (tan shaded area) and ensemble-mean (gray shaded

area) estimates of MJO predictability (65-day range).
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1973). In a statistically consistent ensemble, the root-

mean-square error (RMSE) of the ensemble mean

(computed over a sufficiently large sample) will be equal

to the ensemble standard deviation (ensemble spread)

(Whitaker and Loughe 1998) at all forecast leads.

The relationship between the ensemble spread and the

ensemble-meanRMSE for theMJO is explored in the eight

models. Both estimates were made following the form

suited for finite size ensembles as defined by Leutbecher

and Palmer (2008).

For each hindcast initial condition and each forecast

lead day, a bivariate measure of the ensemble spread for

MJO is defined as the combined standard deviations of

the RMM1 and RMM2 values in the ensemble member

hindcasts about their respective ensemble-mean values,

and the average is computed over all winter initial

conditions (similar to the error and signal estimation).

The bivariate measure of the ensemble-mean RMSE for

MJO is estimated by computing the root-mean-square

difference between the observed and forecasted RMM

values in ensemble-mean hindcasts (following Lin et al.

2008). Figure 5a shows the ensemble spread (solid lines)

and ensemble-mean RMSE (dotted lines) estimates as

a function of hindcast lead for the eight EPSs. The

spread is lower than the RMSE in all models, indicating

that all the EPSs are underdispersive for the MJO. An

underdispersive ensemble is one that does not account

for all sources of error from internal dynamics (Buizza

et al. 1999). The level of dispersion in the different EPS

can be measured from the closeness of the spread (solid

curves) and RMSE (dashed curves) values. From Fig. 5a,

it can be seen that these two curves are closest to each

other for ABOM2. For better comprehension of the level

of dispersion in the eight EPSs in Fig. 5a, the average

difference between the spread and RMSE (from Fig. 5a)

for the first 25 days of hindcast is plotted against the skill

of the EPS in Fig. 5b. The skill of the EPS is defined as the

improvement of ensemble-mean prediction skill over

single-member prediction skill (hatched area in Fig. 4).

A smaller negative value on the x axis of Fig. 5b reflects

a better dispersed EPS for the MJO. By this measure,

ABOM2, ECMWF, and ABOM1 exhibit relatively bet-

ter dispersed EPSs and are associated with higher

ensemble-mean skill. In a recent study, Hudson et al.

(2013) have shown how the coupled bred vector ensem-

ble generation approach in ABOM2 produces better

dispersed ensembles as compared to ABOM1. They also

argue that lagged atmospheric initial conditions as in

ABOM1 can often lead to underdispersion of ensembles.

While this difference in level of dispersion between

ABOM1 and ABOM2 holds well in our analysis, much

higher levels of underdispersion are observed in the other

models that have used widely different approaches for

ensemble generation. However, we would refrain from

making any further comparisons or conclusions at this

stage.

5. Summary and conclusions

The predictability of boreal winter MJO (November–

March) is investigated by analyzing hindcasts from eight

GCMs participating in the ISVHE initiative. The MJO

in the hindcasts were extracted by projecting the hind-

cast OLR and 850- and 200-hPa wind fields on to the

observed WH04 combined EOFs. MJO predictability

was assessed based on these RMM values. For a given

model, the ensemble hindcasts are considered as a pool

of ‘‘control’’ and ‘‘perturbed’’ hindcasts. Measuring the

divergence of MJO in a pair of ensemble member

hindcasts is considered equivalent to measuring the di-

vergence of MJO in a perfect model setup. The signal to

noise ratio method for predictability estimation used by

previous studies like Waliser et al. (2003), Liess et al.

(2005), and Fu et al. (2007, 2008) is adopted in this study.

Two approaches are used to estimate the MJO pre-

dictability: that is, the single-member estimate and the

ensemble estimate. Single-member predictability was de-

rived from the divergence of ensemble member hindcast

FIG. 5. (a) Bivariate measure of ensemble spread (solid lines)

and ensemble-mean RMSE (dashed lines) for the MJO in the

different EPSs. (b) The 25-day forecast lead average of the spread

minus RMSE values [set of solid and dashed curves in (a)] for each

model, plotted against the corresponding values of skill improve-

ment (day) in ensemble means over single-member forecasts

(width of hatched area in Fig. 4).
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pairs: one of which is treated as the control and the other is

treated as the perturbed. When assessing ensemble pre-

dictability, the divergence of an ensemble member hind-

cast is measured with respect to the ensemble-mean

hindcast of all other ensemble members. On an average,

a 20–30-day MJO single-member predictability is ex-

hibited in the collection of the eight ISVHE models and

the ensemble estimate of MJO predictability is often be-

tween 35 and 45 days (Fig. 4). The dependence of the

predictability estimates on the MJO amplitude and phase

during hindcast initiation shows a lower predictability

(often by 5–10 days) for hindcasts initiated from weak

MJO conditions (Fig. 2), as compared to those initiated

from strong MJO conditions (Fig. 1). A systematic phase

dependencywas not observed in allmodels. TheABOM1,

ABOM2, and ECMWF models exhibited some phase

dependence with slightly higher predictability for hind-

casts initiated from MJO phases 2, 3, 6, or 7 (Fig. 3a). It

was also noted that in most models the predictability as-

sociated with hindcasts initiated from phases 2 and 3 was

equal to or even higher that the predictability associated

with the other MJO phases, giving a range of around 20

days. This implies that the so-called Maritime Continent

prediction barrier may not be an intrinsic predictability

limitation. The predictability of primary and secondary

MJO events was also examined based on the classification

by Straub (2013). Four of the eight models showed a

higher predictability for secondary MJO events as com-

pared to primary events (Fig. 3b). Comparison of the

predictability estimates with the prediction skill of the

models reveals that, for all models, the present-day single-

member prediction skills can be further improved by at

least 1 week before achieving the single-member pre-

dictability limit. The relation between ensemble spread

and ensemble-mean RMSE for the MJO was also ana-

lyzed in the eight EPSs. While all the EPSs were found to

be underdispersed for theMJO, the EPSs of theABOM2,

ECMWF, andABOM1models were found to be the ones

relatively better dispersed for the MJO, and this is also

reflected in the better MJO prediction skill for these

models. The results indicate that, in addition to the efforts

toward model and initial condition improvements, dedi-

cated efforts should also be directed toward developing

better ensemble prediction strategies. The notable differ-

ences in MJO prediction skill brought out by tailored

ensemble prediction approaches for the MJO (e.g., Ham

et al. 2012; Chikamoto et al. 2007) point to the open areas

of research for further extending the MJO prediction ca-

pabilities using dynamical models.

Acknowledgments. The authors thank all the partici-

pating members of ISVHE project for the dataset. We

acknowledge support from the NOAA/Climate Program

Office Climate Test Bed under Project GC10-287a,

ONR Marine Meteorology Program under Project

ONRBAA12-001, NSF Climate and Large-Scale Dy-

namics Program under Awards AGS-1221013 and AGS-

1228302, and NOAA/MAPP Program under Award

NA12OAR4310075. The contribution from D. Waliser

was performed on behalf of JIFRESSE and the Jet Pro-

pulsion Laboratory (JPL), California Institute of Tech-

nology, under a contract with the National Aeronautics

and Space Administration. J.-Y. Lee and B. Wang ac-

knowledge support from APEC Climate Center, Global

Research Laboratory (GRL) Grant MEST 2011-0021927,

and IPRC, which is in part supported by JAMSTEC,

NOAA, and NASA.

REFERENCES

Agudelo, P. A., C. D. Hoyos, P. J. Webster, and J. A. Curry, 2009:

Application of a serial extended forecast experiment using

the ECMWF model to interpret the predictive skill of trop-

ical intraseasonal variability. Climate Dyn., 32, 855–872,

doi:10.1007/s00382-008-0447-x.

Alves, O., M. Balmaseda, D. Anderson, and T. Stockdale,

2004: Sensitivity of dynamical seasonal forecasts to ocean

initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647–668,
doi:10.1256/qj.03.25.

Brunet, G., and Coauthors, 2010: Collaboration of the weather

and climate communities to advance subseasonal to sea-

sonal prediction. Bull. Amer. Meteor. Soc., 91, 1397–1406,
doi:10.1175/2010BAMS3013.1.

Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of

the atmospheric global circulation. J.Atmos. Sci., 52, 1434–1456,

doi:10.1175/1520-0469(1995)052,1434:TSVSOT.2.0.CO;2.

——, M. Miller, and T. N. Palmer, 1999: Stochastic representa-

tion of model uncertainties in the ECMWF ensemble pre-

diction system. Quart. J. Roy. Meteor. Soc., 125, 2887–2908,
doi:10.1002/qj.49712556006.

Candille, G., and O. Talagrand, 2005: Evaluation of probabilistic

prediction systems for a scalar variable.Quart. J. Roy. Meteor.

Soc., 131, 2131–2150, doi:10.1256/qj.04.71.
Chikamoto, Y., H. Mukougawa, T. Kubota, H. Sato, A. Ito, and

S. Maeda, 2007: Evidence of growing bred vector associated

with the tropical intraseasonal oscillation.Geophys. Res. Lett.,

34, L04806, doi:10.1029/2006GL028450.

Colman, R., and Coauthors, 2005: BMRC Atmospheric Model

(BAM) version 3.0: Comparison with mean climatology.

BMRC Research Rep. 108, 23 pp.

Cottrill, A., and Coauthors, 2013: Seasonal forecasting in the Pa-

cific using the coupled model POAMA-2. Wea. Forecasting,

28, 668–680, doi:10.1175/WAF-D-12-00072.1.

Fu, X., and B. Wang, 2004: Differences of boreal summer intra-

seasonal oscillations simulated in an atmosphere–ocean coupled

model and an atmosphere-onlymodel. J. Climate, 17, 1263–1271,

doi:10.1175/1520-0442(2004)017,1263:DOBSIO.2.0.CO;2.

——, ——, T. Li, and J. McCreary, 2003: Coupling between

northward-propagating, intraseasonal oscillations and sea surface

temperature in the Indian Ocean. J. Atmos. Sci., 60, 1733–1753,

doi:10.1175/1520-0469(2003)060,1733:CBNIOA.2.0.CO;2.

——, ——, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–

ocean coupling on the predictability of monsoon intraseasonal

oscillations. J. Atmos. Sci., 64, 157–174, doi:10.1175/JAS3830.1.

15 JUNE 2014 NEENA ET AL . 4541

http://dx.doi.org/10.1007/s00382-008-0447-x
http://dx.doi.org/10.1256/qj.03.25
http://dx.doi.org/10.1175/2010BAMS3013.1
http://dx.doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
http://dx.doi.org/10.1002/qj.49712556006
http://dx.doi.org/10.1256/qj.04.71
http://dx.doi.org/10.1029/2006GL028450
http://dx.doi.org/10.1175/WAF-D-12-00072.1
http://dx.doi.org/10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2
http://dx.doi.org/10.1175/JAS3830.1


——,B.Yang,Q. Bao, andB.Wang, 2008: Sea surface temperature

feedback extends the predictability of tropical intraseasonal

oscillation. Mon. Wea. Rev., 136, 577–597, doi:10.1175/

2007MWR2172.1.

——,B.Wang, J.-Y. Lee,W.Wang, and L.Gao, 2011: Sensitivity of

dynamical intraseasonal prediction skills to different initial

conditions. Mon. Wea. Rev., 139, 2572–2592, doi:10.1175/

2011MWR3584.1.

Gottschalck, J., and Coauthors, 2010: A framework for assessing

operational Madden–Julian oscillation forecasts: A CLIVAR

MJO Working Group project. Bull. Amer. Meteor. Soc., 91,

1247–1258, doi:10.1175/2010BAMS2816.1.

Ham, Y.-G., S. Schubert, and Y. Chang, 2012: Optimal initial

perturbations for ensemble prediction of the Madden–Julian

oscillation during boreal winter. J. Climate, 25, 4932–4945,

doi:10.1175/JCLI-D-11-00344.1.

Hendon, H. H., 2000: Impact of air–sea coupling on the MJO

in a GCM. J. Atmos. Sci., 57, 3939–3952, doi:10.1175/

1520-0469(2001)058,3939:IOASCO.2.0.CO;2.

——, andM. L. Salby, 1994: The life cycle of theMadden–Julian

oscillation. J. Atmos. Sci., 51, 2225–2237, doi:10.1175/

1520-0469(1994)051,2225:TLCOTM.2.0.CO;2.

Hoffman, R. N., and E. Kalnay, 1983: Lagged average forecasting,

an alternative to Monte Carlo forecasting. Tellus, 35A, 100–

118, doi:10.1111/j.1600-0870.1983.tb00189.x.

Hudson, D., A. G. Marshall, Y. Yin, O. Alves, and H. H. Hendon,

2013: Improving intraseasonal prediction with a new ensemble

generation strategy.Mon.Wea. Rev., 141, 4429–4449, doi:10.1175/

MWR-D-13-00059.1.

Inness, P. M., and J. M. Slingo, 2006: The interaction of the

Madden–Julian oscillation with the maritime continent in a

GCM. Quart. J. Roy. Meteor. Soc., 132, 1645–1667, doi:10.1256/

qj.05.102.

——, ——, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001:

Organization of tropical convection in a GCM with varying

vertical resolution: Implication for the simulation of the

Madden-Julian oscillation. Climate Dyn., 17, 777–793,

doi:10.1007/s003820000148.

——, ——, E. Guilyardi, and J. Cole, 2003: Simulation of the

Madden–Julian oscillation in a coupled general circulation

model. Part I: Comparisons with observations and an

atmosphere-only GCM. J. Climate, 16, 345–364, doi:10.1175/

1520-0442(2003)016,0345:SOTMJO.2.0.CO;2.

Ishikawa, I., H. Tsujino, M. Hirabara, H. Nakano, T. Yasuda, and

H. Ishizaki, 2005: Meteorological Research Institute Com-

munity Ocean Model (MRI.COM) manual (in Japanese).

Meteorological Research Institute Tech Rep. 47, 189 pp.

Japan Meteorological Agency, 2007: Outline of operational nu-

merical weather prediction at the Japan Meteorological

Agency. WMO Numerical Weather Prediction Progress Rep.

Appendix, 199 pp.

Jiang, X., D. E. Waliser, M. C. Wheeler, C. Jones, M. I. Lee,

and S. D. Schubert, 2008: Assessing the skill of an all-

season statistical forecast model for the Madden–Julian

oscillation. Mon. Wea. Rev., 136, 1940–1956, doi:10.1175/

2007MWR2305.1.

Jones, C., and L. M. V. Carvalho, 2002: Active and break phases in

the South American monsoon system. J. Climate, 15, 905–914,

doi:10.1175/1520-0442(2002)015,0905:AABPIT.2.0.CO;2.

——, D. E. Waliser, J.-K. E. Schemm, and W. K. M. Lau, 2000:

Prediction skill of the Madden and Julian oscillation in dy-

namical extended range forecasts. Climate Dyn., 16, 273–289,

doi:10.1007/s003820050327.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471,

doi:10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2.

Kang, I.-S., and H.-M. Kim, 2010: Assessment of MJO pre-

dictability for boreal winter with various statistical and dy-

namical models. J. Climate, 23, 2368–2378, doi:10.1175/

2010JCLI3288.1.

Kim, D., and Coauthors, 2009: Application of MJO simulation

diagnostics to climate models. J. Climate, 22, 6413–6436,

doi:10.1175/2009JCLI3063.1.

Kug, J.-S., I.-S. Kang, and D.-H. Choi, 2008: Seasonal climate

predictability with tier-one and tier-two prediction systems.

Climate Dyn., 31, 403–416, doi:10.1007/s00382-007-0264-7.

Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting.

J. Comput. Phys., 227, 3515–3539, doi:10.1016/j.jcp.2007.02.014.
Liebmann, B., and C. A. Smith, 1996: Description of a complete

(interpolated) outgoing longwave radiation dataset. Bull.

Amer. Meteor. Soc., 77, 1275–1277.

Liess, S., D. E.Waliser, and S. Schubert, 2005: Predictability studies

of the intraseasonal oscillation with the ECHAM5 GCM.

J. Atmos. Sci., 62, 3320–3336, doi:10.1175/JAS3542.1.

Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the

Madden–Julian oscillation in two Canadian atmospheric

models. Mon. Wea. Rev., 136, 4130–4149, doi:10.1175/

2008MWR2459.1.

Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability

in 14 IPCC AR4 climate models. Part I: Convective signals.

J. Climate, 19, 2665–2690, doi:10.1175/JCLI3735.1.

Liu, P., B.Wang, K. R. Sperber, T. Li, andG. A.Meehl, 2005:MJO

in the NCAR CAM2 with the Tiedtke convective scheme.

J. Climate, 18, 3007–3020, doi:10.1175/JCLI3458.1.

Lo, F., and H. H. Hendon, 2000: Empirical prediction of the

Madden–Julian oscillation. Mon. Wea. Rev., 128, 2528–2543,

doi:10.1175/1520-0493(2000)128,2528:EERPOT.2.0.CO;2.

Lorenz, E. N., 1982: Atmospheric predictability experiments with

a large numerical model. Tellus, 34, 505–513, doi:10.1111/

j.2153-3490.1982.tb01839.x.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day

oscillation in the zonal wind in the tropical Pacific. J. Atmos.

Sci., 28, 702–708, doi:10.1175/1520-0469(1971)028,0702:

DOADOI.2.0.CO;2.

Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of

hurricane activity in the Gulf of Mexico by the Madden-

Julian oscillation. Science, 287, 2002–2004, doi:10.1126/

science.287.5460.2002.

——, and——, 2000b:Modulation of eastern North Pacific hurricanes

by the Madden–Julian oscillation. J. Climate, 13, 1451–1460,

doi:10.1175/1520-0442(2000)013,1451:MOENPH.2.0.CO;2.

——, and ——, 2001: The sensitivity of intraseasonal variability in

the NCAR CCM3 to changes in convective parameterization.

J. Climate, 14, 2015–2034, doi:10.1175/1520-0442(2001)014,2015:

TSOIVI.2.0.CO;2.

Matthews, A. J., 2008: Primary and successive events in the

Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 134,

439–453, doi:10.1002/qj.224.

Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The

ECMWF ensemble prediction system: Methodology and val-

idation. Quart. J. Roy. Meteor. Soc., 122, 73–119, doi:10.1002/

qj.49712252905.

Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R.

Asrar, and J. Caughey, 2012: Multiscale convective organization

and theYOTCvirtual global field campaign.Bull.Amer.Meteor.

Soc., 93, 1171–1187, doi:10.1175/BAMS-D-11-00233.1.

4542 JOURNAL OF CL IMATE VOLUME 27

http://dx.doi.org/10.1175/2007MWR2172.1
http://dx.doi.org/10.1175/2007MWR2172.1
http://dx.doi.org/10.1175/2011MWR3584.1
http://dx.doi.org/10.1175/2011MWR3584.1
http://dx.doi.org/10.1175/2010BAMS2816.1
http://dx.doi.org/10.1175/JCLI-D-11-00344.1
http://dx.doi.org/10.1175/1520-0469(2001)058<3939:IOASCO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2001)058<3939:IOASCO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.1983.tb00189.x
http://dx.doi.org/10.1175/MWR-D-13-00059.1
http://dx.doi.org/10.1175/MWR-D-13-00059.1
http://dx.doi.org/10.1256/qj.05.102
http://dx.doi.org/10.1256/qj.05.102
http://dx.doi.org/10.1007/s003820000148
http://dx.doi.org/10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2
http://dx.doi.org/10.1175/2007MWR2305.1
http://dx.doi.org/10.1175/2007MWR2305.1
http://dx.doi.org/10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2
http://dx.doi.org/10.1007/s003820050327
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1175/2010JCLI3288.1
http://dx.doi.org/10.1175/2010JCLI3288.1
http://dx.doi.org/10.1175/2009JCLI3063.1
http://dx.doi.org/10.1007/s00382-007-0264-7
http://dx.doi.org/10.1016/j.jcp.2007.02.014
http://dx.doi.org/10.1175/JAS3542.1
http://dx.doi.org/10.1175/2008MWR2459.1
http://dx.doi.org/10.1175/2008MWR2459.1
http://dx.doi.org/10.1175/JCLI3735.1
http://dx.doi.org/10.1175/JCLI3458.1
http://dx.doi.org/10.1175/1520-0493(2000)128<2528:EERPOT>2.0.CO;2
http://dx.doi.org/10.1111/j.2153-3490.1982.tb01839.x
http://dx.doi.org/10.1111/j.2153-3490.1982.tb01839.x
http://dx.doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
http://dx.doi.org/10.1126/science.287.5460.2002
http://dx.doi.org/10.1126/science.287.5460.2002
http://dx.doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2001)014<2015:TSOIVI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2001)014<2015:TSOIVI>2.0.CO;2
http://dx.doi.org/10.1002/qj.224
http://dx.doi.org/10.1002/qj.49712252905
http://dx.doi.org/10.1002/qj.49712252905
http://dx.doi.org/10.1175/BAMS-D-11-00233.1


Murphy, A. H., 1973: A new vector partition of the prob-

ability score. J. Appl. Meteor., 12, 595–600, doi:10.1175/

1520-0450(1973)012,0595:ANVPOT.2.0.CO;2.

Pegion, K., and B. Kirtman, 2008a: The impact of air–sea in-

teractions on the predictability of the tropical intrasea-

sonal oscillation. J. Climate, 21, 5870–5886, doi:10.1175/

2008JCLI2209.1.

——, and ——, 2008b: The impact of air–sea interactions on the

simulation of tropical intraseasonal variability. J. Climate, 21,

6616–6635, doi:10.1175/2008JCLI2180.1.

Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2011:

Prediction of theMadden–Julian oscillation with the POAMA

dynamical prediction system. Climate Dyn., 36, 649–661,

doi:10.1007/s00382-010-0754-x.

Reichler, T., and J. O. Roads, 2005: Long-range predictability in

the tropics. Part II: 30–60-day variability. J. Climate, 18, 634–

650, doi:10.1175/JCLI-3295.1.

Saha, S., and Coauthors, 2006: The NCEP Climate Forecast Sys-

tem. J. Climate, 19, 3483–3517, doi:10.1175/JCLI3812.1.
——, and Coauthors, 2014: The NCEP Climate Forecast Sys-

tem version 2. J. Climate, 27, 2185–2208, doi:10.1175/

JCLI-D-12-00823.1.

Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones

on ocean heat transport in a high resolution coupled general

circulation model. J. Climate, 24, 4368–4384, doi:10.1175/

2011JCLI4104.1.

Seo, K.-H., J.-K. E. Schemm, C. Jones, and S. Moorthi, 2005:

Forecast skill of the tropical intraseasonal oscillation in the

NCEP GFS dynamical extended range forecasts. Climate

Dyn., 25, 265–284, doi:10.1007/s00382-005-0035-2.
——, W. Wang, J. Gottschalck, Q. Zhang, J.-K. E. Schemm, W. R.

Higgins, andA.Kumar, 2009: Evaluation ofMJO forecast skill

from several statistical and dynamical forecast models.

J. Climate, 22, 2372–2388, doi:10.1175/2008JCLI2421.1.
Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15

atmospheric general circulation models: Results from an

AMIP diagnostic subproject. Climate Dyn., 12, 325–357,

doi:10.1007/BF00231106.

Sperber, K. R., and D. Waliser, 2008: New approaches to un-

derstanding, simulating, and forecasting the Madden–Julian

oscillation. Bull. Amer. Meteor. Soc., 89, 1917–1920, doi:10.1175/
2008BAMS2700.1.

Straub, K.H., 2013:MJO Initiation in the real-timemultivariateMJO

index. J. Climate, 26, 1130–1151, doi:10.1175/JCLI-D-12-00074.1.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC:

The generation of perturbations. Bull. Amer. Meteor.

Soc., 74, 2317–2330, doi:10.1175/1520-0477(1993)074,2317:

EFANTG.2.0.CO;2.

——, and ——, 1997: Ensemble forecasting at NCEP and the

breeding method.Mon.Wea. Rev., 125, 3297–3319, doi:10.1175/

1520-0493(1997)125,3297:EFANAT.2.0.CO;2.

Vialard, J., F. Vitart, M. A. Balmaseda, T. N. Stockdale, and D. L. T.

Anderson, 2005: An ensemble generation method for seasonal

forecasting with an ocean–atmosphere coupled model. Mon.

Wea. Rev., 133, 441–453, doi:10.1175/MWR-2863.1.

Vintzileos, A., and H.-L. Pan, 2007: On the importance of hori-

zontal resolution and initial conditions to forecasting trop-

ical intraseasonal oscillations: The Maritime Continent

prediction barrier. Extended Abstracts,NOAA/CTB-COLA

Joint Seminar, Camp Springs, MD, NOAA/CTB and COLA.

[Available online at http://www.nws.noaa.gov/ost/climate/

STIP/CTB-COLA/Augustin_091907.htm.]

Vitart, F., and F. Molteni, 2010: Simulation of the Madden-Julian os-

cillation and its teleconnections in the ECMWF forecast system.

Quart. J. Roy. Meteor. Soc., 136, 842–855, doi:10.1002/qj.623.

——, S. Woolnough, M. A. Balmaseda, and A.M. Tompkins, 2007:

Monthly forecast of the Madden–Julian oscillation using

a coupledGCM.Mon.Wea. Rev., 135, 2700–2715, doi:10.1175/

MWR3415.1.

——, A. W. Robertson, and D. L. T. Anderson, 2012: Subseasonal

to Seasonal Prediction Project: Bridging the gap between

weather and climate. WMO Bull., 61, 23–28.

Waliser, D. E., 2006a: Predictability of tropical intraseasaonal

variability. Predictability of Weather and Climate, T. Palmer

and R. Hagedorn, Eds., Cambridge University Press, 275–305.

——, 2006b: Intraseasonal variability. The AsianMonsoon, B.Wang,

Ed., Springer, 203–257.

——, 2011: Predictability and forecasting. Intraseasonal Variability

of the Atmosphere-Ocean Climate System, W. K. M. Lau and

D. E. Waliser, Eds., 2nd ed. Springer, 433–476.

——, K. M. Lau, W. Stern, and C. Jones, 2003: Potential pre-

dictability of the Madden–Julian oscillation. Bull. Amer. Me-

teor. Soc., 84, 33–50, doi:10.1175/BAMS-84-1-33.

Wheeler, M. C., and K. M. Weickmann, 2001: Real-time moni-

toring and prediction of modes of coherent synoptic to intra-

seasonal tropical variability. Mon. Wea. Rev., 129, 2677–2694,

doi:10.1175/1520-0493(2001)129,2677:RTMAPO.2.0.CO;2.

——, and H. H. Hendon, 2004: An all-season real-time multivar-

iate MJO index: Development of an index for monitoring

and prediction. Mon. Wea. Rev., 132, 1917–1932, doi:10.1175/

1520-0493(2004)132,1917:AARMMI.2.0.CO;2.

Whitaker, J. S., and A. F. Loughe, 1998: The relationship be-

tween ensemble spread and ensemble mean skill.Mon.Wea.

Rev., 126, 3292–3302, doi:10.1175/1520-0493(1998)126,3292:

TRBESA.2.0.CO;2.

Woolnough, S. J., F. Vitart, and M. Balmaseda, 2007: The role of

the ocean in the Madden–Julian oscillation: Sensitivity of an

MJO forecast to ocean coupling. Quart. J. Roy. Meteor. Soc.,

133, 117–128, doi:10.1002/qj.4.
Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43,

RG2003, doi:10.1029/2004RG000158.

——, and J. Gottschalck, 2002: SST anomalies of ENSO and the

Madden–Julian oscillation in the equatorial Pacific. J. Cli-

mate, 15, 2429–2445, doi:10.1175/1520-0442(2002)015,2429:

SAOEAT.2.0.CO;2.

——, ——, E. D. Maloney, M. Moncrieff, F. Vitart, D. E. Waliser,

B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut.

Geophys. Res. Lett., 40, 1223–1230, doi:10.1002/grl.50244.

Zhang, Q., and H. Van den Dool, 2012: Relative merit of model

improvement versus availability of retrospective forecasts:

The case of Climate Forecast System MJO prediction. Wea.

Forecasting, 27, 1045–1051, doi:10.1175/WAF-D-11-00133.1.

Zheng, Y., D. E. Waliser, W. F. Stern, and C. Jones, 2004: The role

of coupled sea surface temperatures in the simulation of the

tropical intraseasonal oscillation. J. Climate, 17, 4109–4134,

doi:10.1175/JCLI3202.1.

15 JUNE 2014 NEENA ET AL . 4543

http://dx.doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
http://dx.doi.org/10.1175/2008JCLI2209.1
http://dx.doi.org/10.1175/2008JCLI2209.1
http://dx.doi.org/10.1175/2008JCLI2180.1
http://dx.doi.org/10.1007/s00382-010-0754-x
http://dx.doi.org/10.1175/JCLI-3295.1
http://dx.doi.org/10.1175/JCLI3812.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/2011JCLI4104.1
http://dx.doi.org/10.1175/2011JCLI4104.1
http://dx.doi.org/10.1007/s00382-005-0035-2
http://dx.doi.org/10.1175/2008JCLI2421.1
http://dx.doi.org/10.1007/BF00231106
http://dx.doi.org/10.1175/2008BAMS2700.1
http://dx.doi.org/10.1175/2008BAMS2700.1
http://dx.doi.org/10.1175/JCLI-D-12-00074.1
http://dx.doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
http://dx.doi.org/10.1175/MWR-2863.1
http://www.nws.noaa.gov/ost/climate/STIP/CTB-COLA/Augustin_091907.htm
http://www.nws.noaa.gov/ost/climate/STIP/CTB-COLA/Augustin_091907.htm
http://dx.doi.org/10.1002/qj.623
http://dx.doi.org/10.1175/MWR3415.1
http://dx.doi.org/10.1175/MWR3415.1
http://dx.doi.org/10.1175/BAMS-84-1-33
http://dx.doi.org/10.1175/1520-0493(2001)129<2677:RTMAPO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2
http://dx.doi.org/10.1002/qj.4
http://dx.doi.org/10.1029/2004RG000158
http://dx.doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2
http://dx.doi.org/10.1002/grl.50244
http://dx.doi.org/10.1175/WAF-D-11-00133.1
http://dx.doi.org/10.1175/JCLI3202.1

