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Abstract 13 

Convective transition statistics, which describe the relation between column-integrated water 14 

vapor (CWV) and precipitation, are compiled over tropical oceans using satellite and ARM site 15 

measurements to quantify the temperature and resolution dependence of the precipitation-16 

CWV relation at fast timescales relevant to convection. At these timescales, and for 17 

precipitation especially, uncertainties associated with observational systems must be addressed 18 

by examining features with a variety of instrumentation, and identifying robust behaviors 19 

versus instrument sensitivity at high rain rates. Here the sharp pickup in precipitation as CWV 20 

exceeds a certain critical threshold is found to be insensitive to spatial resolution, with 21 

convective onset occurring at higher CWV but at lower column relative humidity as bulk 22 

tropospheric temperature increases. Mean tropospheric temperature profiles conditioned on 23 

precipitation show vertically coherent structure across a wide range of temperature, 24 

reaffirming the use of a bulk temperature measure in defining the convective transition 25 

statistics. The joint probability distribution of CWV and precipitation develops a peak 26 

probability at low precipitation for CWV above critical, with rapid decreasing probability of high 27 

precipitation below and near critical, and exhibits systematic changes under spatial-averaging. 28 

The precipitation pickup with CWV is reasonably insensitive to time-averaging up to several 29 

hours but is smoothed at daily timescales. This work demonstrates that CWV relative to critical 30 

serves as an effective predictor of precipitation with only minor geographic variations in the 31 

tropics, quantifies precipitation-related statistics subject to different spatial-temporal 32 

resolution, and provides a baseline for model comparison to apply these statistics as 33 

observational constraints on precipitation processes.  34 
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1. Introduction 35 

Despite the ongoing improvement of weather and climate modeling in recent decades in 36 

terms of model resolution and number of simulated processes, convective parameterization 37 

remains a major contributor to the uncertainty of future projection (Sanderson 2011; Rowell 38 

2012; Yokohata et al. 2012; Sherwood et al. 2014) and systematic biases in precipitation and 39 

clouds persist. A non-exhaustive list of persistent biases includes the double-ITCZ bias (Mapes 40 

and Neale 2011; Hirota et al. 2014), insensitivity of precipitation to environment humidity 41 

(Oueslati and Bellon 2013), low bias in tropospheric humidity (Gonzalez and Jiang 2017), failing 42 

to capture the amplitude and propagation of MJO (Kim et al. 2014; Jiang et al. 2016, 2017), 43 

unrealistic statistics and surface storm tracks for tropical cyclones (Booth et al. 2017), and 44 

incorrect precipitation diurnal cycle over land (Covey et al. 2016). These biases also impact 45 

model diagnosis for short-term forecasting purposes, since models adopted for weather 46 

forecasting or reanalysis share common components with climate models. 47 

Many conventional diagnostics for climate models emphasize comparisons against long-term 48 

climatology or variability at different timescales, and the model performance examined by 49 

these metrics are affected by multiple factors. While sensitivity experiments with respect to 50 

such metrics are useful in identifying important processes (Benedict et al. 2013, 2014; Boyle et 51 

al. 2015; Bernstein and Neelin 2016; Langenbrunner and Neelin 2017), the contribution of 52 

certain processes can be difficult to isolate, making constraining model performance 53 

challenging. As such, there is an emerging need for diagnostics targeting processes and focusing 54 

on the most relevant timescales. This study presents an example of such process-oriented 55 

diagnostics – the convective transition statistics – which focus on the fast-timescale deep 56 

convection in the tropics. 57 

The sensitivity of moist convection to lower free-tropospheric humidity had been suggested 58 

by the analysis of TOGA COARE and operational sounding data for the tropical western Pacific 59 

(Brown and Zhang 1997; Sherwood and Wahrlich 1999; Parsons et al. 2000), and was 60 

subsequently affirmed by numerical experiments (Tompkins 2001; Redelsperger et al. 2002; 61 

Ridout 2002; Derbyshire et al. 2004). Later observational and modeling studies pointed to the 62 

importance of organized convective systems in determining the environment moisture field 63 

(Tao and Moncrieff 2009; Yano et al. 2012; Moncrieff et al. 2017). Bretherton et al. (2004) 64 

documented an empirical relationship between the column relative humidity (CRH) and 65 

precipitation over tropical oceans at daily and monthly timescales in SSM/I satellite retrievals 66 

(see also Rushley et al. 2018). Based on the analysis of the same satellite observations at fast 67 

timescales, Peters and Neelin (2006) noted a sharp increase in precipitation as the column-68 

integrated water vapor (CWV) exceeded a certain threshold, and, using the analogy to 69 

associated behavior in continuous phase transitions, showed consistent relations among a set 70 
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of statistics including probability and variance of precipitation, and the distribution of CWV for 71 

precipitating events. Subsequent studies have examined the dependence on tropospheric 72 

temperature (Neelin et al. 2009) and how the statistics can be reproduced by simple stochastic 73 

models (Stechmann and Neelin 2011, 2014). The plume buoyancy calculations based on 74 

ground-based measurements at tropical ARM sites (Holloway and Neelin 2009; Schiro et al. 75 

2016) and the NCAR CAM5 simulations (Sahany et al. 2012; Kuo et al. 2017) have demonstrated 76 

that entrainment is instrumental in explaining the observed precipitation-CWV relation, and 77 

that the relation is qualitatively robust over land and ocean. These convective transition 78 

statistics characterize the dependence of tropical convection on bulk measures of the water 79 

vapor-temperature environment. 80 

The robust rapid increase in conditionally-averaged precipitation and conditional probability 81 

of precipitation as CWV exceeds a certain threshold (the “pickup of precipitation”) derived from 82 

the tropical ARM sites have been used to constrain the entrainment parameter in the NCAR 83 

CESM (Kuo et al. 2017). Given that precipitation-related statistics are sensitive to resolution 84 

(Chen and Dai 2017; Klingaman et al. 2017), to allow for a more quantitative comparison to 85 

model output subject to varying spatial resolution and temporal frequency, the dependence of 86 

the convective transition statistics on spatial-temporal resolution must be quantified. Moreover, 87 

the robustness to instrumentation, especially at high rain rate, should be addressed to ensure 88 

the reliability of such diagnostics. The purposes of this study are to quantify the resolution 89 

dependence and robustness of the statistics, provide an observational baseline for model 90 

comparison, and to expand the set of related properties that can be understood within this 91 

framework. 92 

This manuscript is organized as follows. Section 2 describes the datasets analyzed here. The 93 

basic convective transition statistics, which build on those introduced in previous work (e.g., 94 

Peters and Neelin 2006; Neelin et al. 2008), are presented in Section 3 with the following 95 

additions: using newer datasets, assessing the spatial-resolution dependence of the statistics, 96 

testing the robustness to instrumentation and evaluating sensitivity to the choice of bulk 97 

measure of tropospheric temperature. Sections 4-6 explore new statistics characterizing the 98 

convective transition. Section 4 examines the geographic variations, or the lack thereof, of the 99 

effectiveness of CWV relative to critical as a predictor of precipitation, and the associated 100 

dependences on spatial-temporal resolution. The sensitivity of the statistics to time-averaging is 101 

discussed in Section 5. The joint-PDF of CWV and precipitation, and its dependence on spatial 102 

resolution and instrumentation, are shown in Section 6. Finally, Section 7 summarizes the 103 

properties of convective transition statistics, and briefly discusses their potential as diagnostic 104 

tools. 105 

 106 
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2. Datasets 107 

Compiling the convective transition statistics requires column-integrated water vapor CWV, 108 

precipitation rate 𝑃, column-integrated saturation humidity 𝑞𝑠𝑎𝑡̂  [≡∫ 𝑞𝑠𝑎𝑡(𝑇(𝑝), 𝑝)𝑑𝑝/𝑔; here 109 

𝑞𝑠𝑎𝑡(𝑇(𝑝), 𝑝) is the saturation specific humidity with respect to liquid water as a function of 110 

temperature 𝑇(𝑝) and pressure 𝑝], and mass-weighted column-averaged temperature �̂�.  111 

The primary source of CWV and 𝑃 here is the TRMM Microwave Imager (TMI) retrieval 112 

products processed by Remote Sensing Systems (RSS; algorithm v7.1; TMIv7.1 hereafter; Wentz 113 

et al. 2015). The retrieved values include gridded (0.25° × 0.25°) snapshots of CWV (units: 0.3 114 

mm) and 𝑃 (units: 0.1 mm hr-1) over ocean, with no data available over land. The TRMM 115 

Precipitation Radar (PR) 2A25 (v7; available at 116 

https://disc.gsfc.nasa.gov/datacollection/TRMM_2A25_7.html) and TRMM 3B42 (v7; 117 

https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_7.html) Rainfall Rate products are used 118 

for comparison. The 2A25 data provides snapshots of 𝑃 with resolution ~ 5 km x 5 km, and 119 

3B42 provides gridded (0.25° × 0.25°) 𝑃 every 3 hours. Note that 3B42 is a merged product; as 120 

such, most values should be interpreted as instantaneous, since 𝑃 is observed during a specific 121 

3-hour window rather than a computed 3-hourly mean. Here, the TMIv7.1, 2A25, and 3B42 122 

data for 01 Jun 2002 – 31 May 2014 are used.  123 

The Microwave Radiometer (MWR) CWV and rain gauge 𝑃 measurements collected from the 124 

DOE ARM sites at Nauru (0° 31' S, 166° 54' E) for 1999-2008 and at Manus (2° 3' S, 147° 25' E) 125 

for 1998-2010 in the tropical western Pacific (both with optical rain gauge), and at the ARM 126 

Mobile Facility near Manaus (3° 7' S, 60° 1' W) for 10 Jan 2014 – 20 Oct 2015 during the 127 

GOAmazon campaign (with acoustic rain gauge) are also used to study the sensitivity of the 128 

statistics to instrumentation and time-averaging.  129 

For column-integrated/averaged 𝑞𝑠𝑎𝑡̂  and �̂�, with the column being defined as 1000-200 hPa, 130 

the 6-hourly 2.5° NCEP-DOE Reanalysis-2 (Kanamitsu et al. 2002) temperature is adopted with 131 

necessary interpolation. Since the spatial and temporal autocorrelation scales of temperature 132 

are expected to be large in the tropics, the interpolation is justified. To avoid potentially 133 

erroneous temperature values from spatial interpolation (e.g., around the Andes and New 134 

Guinea), data in the 2.5°-neighborhood of land pixels are excluded for some of the presented 135 

statistics. 136 

Note that the CWV datasets often do not record a CWV value in the presence of 137 

precipitation, and thus gap-filling is required to re-construct missing data [Section S1 in the 138 

Supplementary Materials (SM)]. For algorithm choices used for the TMIv7.1 data, the 139 

probability of missing CWV depends primarily on 𝑃, with the probability increasing from 0 to 1 140 

almost linearly as 𝑃 increases from 2 to 9 mm hr-1. This even affects the tropical mean 141 
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precipitation, e.g., the annual mean precipitation over tropical oceans (20°S-20°N) is reduced 142 

from 3.1 to 2.1 mm day-1 by excluding precipitation without valid CWV retrievals. Therefore, it 143 

is necessary to gap-fill these missing CWV values; otherwise, the information comprising the 144 

desired statistics would be systematically distorted. Here the default is to simply fill the missing 145 

values using the available CWV value at the geographically nearest pixel. The sensitivity of the 146 

presented statistics to the gap-filling are included in Section S4 (Figs. S7-S11). Similarly, the raw 147 

CWV time series from the tropical ARM site MWR measurements are recorded every 20 s, but 148 

exhibit gaps because of the "wet-window" effect. Gaps shorter than 6 hours are filled using 149 

linear interpolation as described in Schiro et al. (2016). The gap-filled time series are then used 150 

to calculate the mean time series at lower temporal frequencies (e.g., 5-min- or hourly-average). 151 

Precipitation observations are available in the CWV gaps and do not have to be interpolated. 152 

Additionally, satellite CWV retrievals processed by RSS (including TMIv7.1) have a 75-mm cap 153 

set by the algorithm. While CWV rarely exceeds 75 mm, operational soundings occasionally 154 

record such events, e.g., weather stations in Ishigakijima (24° 20′ N, 124° 10′ E; station number 155 

47918) and Taipei (25˚ 02′ N, 121˚ 31′ E; 58968) recorded 80.03 and 82.54 mm at 00Z and 12Z, 156 

respectively, on 21 Aug 2013 under the influence of Typhoon Trami (data from University of 157 

Wyoming Atmospheric Soundings). This serves as a reminder of the imperfect observational 158 

systems, and one must keep in mind the uncertainties when applying the presented statistics 159 

for model diagnosis.  160 

 161 

3. Dependence of precipitation-CWV relation on tropospheric temperature and spatial 162 

resolution 163 

3.1. Basic features of convective transition statistics 164 

Figure 1 shows the basic convective transition statistics, including the precipitation rate (Fig. 165 

1a), probability of precipitation (Fig. 1b; 𝑃 > 1.05 mm hr-1), probability density functions (PDFs) 166 

of all events (Fig. 1c) and precipitating events (Fig. 1d) conditioned on CWV and 𝑞𝑠𝑎𝑡̂  for the 167 

tropical western Pacific, along with results for other tropical ocean basins (Figs. 1e-1p). Here 168 

the statistics are compiled at 0.25° (colored markers) and 0.5° (dots), using 𝑞𝑠𝑎𝑡̂  as the bulk 169 

tropospheric temperature. The standard errors associated with the conditionally averaged 170 

precipitation (conditional precipitation hereafter) at 0.25° are smaller than the marker size, 171 

because of the large number of counts in each bin (on the order of 103-105), and thus are 172 

omitted. To exclude light precipitation and focus on deep-convective events, a threshold of 1.05 173 

mm hr-1 defining precipitating events is chosen, with a natural offset 0.05 since the TMIv7.1 174 

precipitation is discretized by 0.1-mm hr-1 units. Note that the PDFs of all events (e.g., Fig. 1c) – 175 

i.e., PDFs of CWV – are calculated from the joint-PDF of CWV and 𝑞𝑠𝑎𝑡̂ , normalized for each 176 
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basin, by treating CWV as a continuous variable and 𝑞𝑠𝑎𝑡̂  discretely. These PDFs, when 177 

multiplied by the corresponding conditional probabilities (Fig. 1b), give the PDFs for 178 

precipitating events (Fig. 1d). The jumps at 75 mm for the PDFs result from the CWV cap set by 179 

the retrieval algorithm. For sensitivity to gap-filling, see Section S4 (Figs. S7-S11). 180 

For each 𝑞𝑠𝑎𝑡̂ , the conditional precipitation and probability (Fig. 1; 1st and 2nd col.) pick up 181 

sharply as CWV exceeds a certain threshold, referred to as the “critical CWV,” or 𝑤𝑐 (defined in 182 

Section 3.2), around which the PDF of precipitating events (4th col.) peaks. The precipitation 183 

pickup occurs at higher CWV for higher 𝑞𝑠𝑎𝑡̂ , i.e., 𝑤𝑐 is increasing with 𝑞𝑠𝑎𝑡̂ . The conditional 184 

probability would decrease with an increase in the threshold defining precipitating events; i.e., 185 

the probability curves would move towards higher CWV. The spacing between pickup curves 186 

(for conditional precipitation and probability) suggests that the behavior for 𝑞𝑠𝑎𝑡̂  bins ≥ 61 mm 187 

(> 85% of total occurrence over tropical oceans) is slightly different from that in lower 𝑞𝑠𝑎𝑡̂  bins. 188 

Inspection of the geographical distribution of 𝑞𝑠𝑎𝑡̂  occurrence suggests that low-𝑞𝑠𝑎𝑡̂  events are 189 

due mostly to systems originating from the extratropics (Section S6). 190 

The observed sharp increase in precipitation as CWV exceeds critical has been explained by 191 

entraining plume calculations, through which the deep-convective conditional instability can be 192 

estimated. As previously demonstrated (Holloway and Neelin 2009; Schiro et al. 2016; Kuo et al. 193 

2017), CWV serves as a measure of the impact of environment moisture on plume buoyancy, 194 

and hence the instability, through the effects of mixing, as indicated by the precipitation pickup. 195 

The dependence of 𝑤𝑐 on 𝑞𝑠𝑎𝑡̂  can be explained through a similar approach (Sahany et al. 2012). 196 

In Figure 1, the dots (0.5°) match the colored markers (0.25°) in the 1st and 3rd col.; i.e., the 197 

conditional precipitation and PDF of CWV are insensitive to spatial resolution, with small but 198 

noticeable decreases in the PDF at highest CWV (above critical). This insensitivity is consistent 199 

with the assertion that the autocorrelation spatial scales of CWV and tropospheric temperature 200 

are much greater than that of precipitation. Nonetheless, to what extent this holds depends on 201 

the gap-filling (Figs. S9-S11 in Section S4). It is also consistent with Yano et al. (2012) which used 202 

a cloud-resolving model (CRM) and demonstrated that the conditional precipitation as a 203 

function of CWV is quantitatively robust to spatial resolution (up to ~ 1°). 204 

The conditional probability defined by a fixed nonzero threshold (1.05 mm hr-1; Fig. 1; 2nd 205 

col.) slightly shifts toward lower CWV with spatial coarse-graining, consistent with the greater 206 

chances of observing precipitation over a larger area. However, with a much higher threshold 207 

(e.g., 15 mm hr-1, the practical maximum for TMIv7.1 precipitation in the tropics) or at even 208 

lower resolution (e.g., 2°), the dependence on spatial resolution may reverse for the rarer 209 

chances of seeing extreme rainfall over a larger area. These dependences indicate the 210 

underlying joint-PDF of CWV and 𝑃 being resolution-sensitive, as will be discussed in Section 6. 211 
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 212 

3.2. Critical CWV 𝒘𝒄 and collapsed statistics 213 

As described earlier, CWV measures the impact of environment moisture on conditional 214 

instability, and hence precipitation. For those 𝑞𝑠𝑎𝑡̂  bins most relevant in the tropics (≥ 61 mm), 215 

the pickup curves in Fig. 1 suggest the possibility of collapsing statistics by shifting CWV by 𝑤𝑐 216 

for each 𝑞𝑠𝑎𝑡̂ , i.e., the precipitation-CWV relation can be simplified by taking into account the 217 

dependence of 𝑤𝑐 on temperature. To define 𝑤𝑐 as a function of 𝑞𝑠𝑎𝑡̂ , it makes sense to do so 218 

based on conditional precipitation alone, for it, unlike the conditional probability, does not rely 219 

on any threshold and is insensitive to spatial resolution. This assumes that the conditional 220 

precipitation has the form of 𝑓(𝑐𝑤𝑣 − 𝑤𝑐), with its 𝑞𝑠𝑎𝑡̂ -dependence implicitly built in through 221 

𝑤𝑐(𝑞𝑠𝑎𝑡̂ ). See Section S3 regarding details on finding 𝑤𝑐 given the statistics as in Fig. 1.  222 

Figures 2a-2d show the collapsed version of the original statistics for the tropical western 223 

Pacific in Fig. 1a-1d (other basins in Fig. S6). As in Fig. 2a, 𝑤𝑐 is defined as the CWV value at 224 

which the best-fit for conditional precipitation (gray line) intersects with the CWV axis. For 𝑞𝑠𝑎𝑡̂  225 

bins ≥ 70 mm, the conditional precipitation, probability of precipitation (Fig. 2b), and PDF of 226 

precipitating events (Fig. 2d) collapse perfectly. For these 𝑞𝑠𝑎𝑡̂  bins, there are below-critical 227 

precipitating events, many of which are weakly precipitating and excluded because of the 1.05-228 

mm hr-1 threshold adopted here, and are likely associated with the mature and decaying phases 229 

of convection (not shown). As 𝑞𝑠𝑎𝑡̂  increases, 𝑞𝑠𝑎𝑡̂ − 𝑤𝑐 (triangles) increases, indicating critical 230 

deviates from column saturation. For lower 𝑞𝑠𝑎𝑡̂  ≤ 61 mm, both conditional precipitation and 231 

probability have slightly higher (lower) values for CWV right below (above) critical, with some 232 

underpopulated CWV bins (open circles) exceeding the corresponding column saturation 233 

(triangles), indicating minor inconsistency between the retrieval and reanalysis datasets. 234 

Furthermore, there is more below-critical precipitation as 𝑞𝑠𝑎𝑡̂  decreases (Fig. 2d; even more 235 

when a smaller precipitation threshold is adopted), consistent with cold events originating from 236 

the extratropics and exhibiting characteristics different from deep convection in the tropics. 237 

The PDF of CWV in Fig. 2c also collapses around and above critical, with the PDF of non-238 

precipitating events (including those with  𝑃 < 1.05 mm hr-1) varying with 𝑞𝑠𝑎𝑡̂  and basin. For 239 

CWV slightly lower than critical, the PDF of CWV starts to drop rapidly, and the PDF for 240 

precipitating events peaks. As demonstrated in simple stochastic models (Stechmann and 241 

Neelin 2011, 2014), moisture accumulates by surface evaporation and moisture convergence 242 

until CWV reaches critical, at which point precipitation becomes an effective sink, leading to the 243 

drop in the PDF for CWV above critical. Note that the PDF for all events has another peak at 244 

lower CWV because of the balance between surface evaporation and moisture divergence. 245 
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Earlier studies (Neelin et al. 2009; Sahany et al. 2014) have suggested scaling instead of 246 

shifting by 𝑤𝑐, i.e., considering the form 𝑓(𝑐𝑤𝑣/𝑤𝑐) instead of the shift 𝑓(𝑐𝑤𝑣 − 𝑤𝑐), to 247 

collapse the statistics. Both are similar to leading order for small differences in 𝑤𝑐, but to 248 

second order have slightly different effects. Scaling preserves the zero CWV value, which can be 249 

important when examining PDFs across the entire CWV range, while shifting is preferred here 250 

because effects near critical seem to be affected by factors that do not scale with 𝑤𝑐. The two 251 

approaches may lead to different interpretations for warming climate, where some of the 252 

simplest arguments tend to rescale moisture by saturation (see Camargo et al. 2014 for a 253 

discussion surrounding saturation deficit vs relative humidity in projecting future tropical 254 

cyclone genesis frequency). 255 

 256 

3.3. Dependence of critical on temperature 257 

The collapsed conditional precipitation and probability of precipitation for the tropical 258 

western Pacific at 0.25° in Figs. 2a-2b are duplicated in Figs. 3a-3b, along with the critical CWV 259 

𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) (Fig. 3c) and critical column relative humidity (critical CRH) 𝑤𝑐(𝑞𝑠𝑎𝑡̂ )/𝑞𝑠𝑎𝑡̂  (Fig. 3d). 260 

Results for other basins are also shown. Here, we focus on the results derived using TMIv7.1 261 

CWV and precipitation.  262 

In Figs. 3a-3d, the precipitation pickup and the dependence of 𝑤𝑐 on 𝑞𝑠𝑎𝑡̂  are constant across 263 

basins, with slightly lower 𝑤𝑐 for the tropical Atlantic. As noted earlier, a clear transition occurs 264 

around 𝑞𝑠𝑎𝑡̂  = 61 mm in Figs. 3c-3d. For lower 𝑞𝑠𝑎𝑡̂ , the precipitation pickup is less well-defined 265 

and scatters more, and so do the corresponding critical values, with approximately constant 266 

critical CRH. Above the transition 𝑞𝑠𝑎𝑡̂ , the critical values deviate from saturation as 𝑞𝑠𝑎𝑡̂  267 

increases, i.e., deep convective onset occurs at higher CWV but at lower CRH with increasing 268 

tropospheric temperature, as shown in Neelin et al. (2009). The critical CRH decreasing with 269 

𝑞𝑠𝑎𝑡̂  is expected to be robust as long as 𝑤𝑐 is defined through collapsing statistics, for other 270 

reasonable definition of critical [e.g., assuming the functional form of log(1 + 𝑒𝛼(𝑐𝑤𝑣−𝑤𝑐)) for 271 

the conditional precipitation] would only introduce a 𝑞𝑠𝑎𝑡̂ -independent offset of 𝑤𝑐, preserving 272 

the slope of the 𝑤𝑐-𝑞𝑠𝑎𝑡̂  relation which, when compared with the constant CRH (gray) lines in 273 

Fig. 3c, indicates decreasing critical CRH with 𝑞𝑠𝑎𝑡̂ . 274 

The transition from approximately constant to decreasing critical CRH with increasing 𝑞𝑠𝑎𝑡̂  275 

marks the different precipitation regimes, i.e., convection-dominant in the tropics vs. large-276 

scale saturation-driven in the extratropics. 277 

 278 

3.4. Robustness to instrumentation 279 
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Before the convective transition statistics can be used for model diagnostics, their 280 

robustness and sensitivity to instrumentation must be quantified. Figures 3a-3d include the 281 

results derived using multiple datasets, including (i) TMIv7.1 CWV and precipitation, (ii) TMIv7.1 282 

CWV and PR 2A25 precipitation, and (iii) ground-based measurements from Manus and Nauru 283 

ARM sites in the tropical western Pacific. 284 

The statistics in Figs. 3a-3d are robust to TMIv7.1 vs. PR precipitation, with slightly more 285 

scatter for the conditional probability. Combining TMIv7.1 CWV and 3B42 precipitation results 286 

in quantitatively similar statistics except for a slightly smaller slope α of the best-fit for 287 

conditional precipitation (not shown). 288 

In Fig. 3a, the conditional precipitation from Manus and Nauru ground-based measurements, 289 

collapsed using 𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) for the tropical western Pacific (WPac; TMIv7.1 CWV + precipitation), 290 

are quantitatively consistent with those from satellite retrievals, with significant low bias at 291 

highest CWV (relative to critical; 𝑐𝑤𝑣 − 𝑤𝑐 > 5 mm); the corresponding conditional probability 292 

in Fig. 3b is uniformly lower than satellite retrievals because of the difference in spatial-293 

resolution, with the similar low bias. Combining the ground-based CWV time series and 3B42 294 

precipitation around Manus and Nauru shows the same bias at high CWV, indicating that the 295 

cause is due to the ground-based MWR CWV measurements (Section S8). These have a “wet-296 

window” problem, i.e., high CWV events associated with strong precipitation are missing in the 297 

raw CWV time series, and gap-filling can only partially compensate for this. 298 

Although not the focus here, conditional precipitation and probability at the Manaus 299 

GOAmazon site (over land) exhibits quantitative differences from those over oceans as in Fig. 3, 300 

despite the qualitative similarities we shall discuss in Section 5. 301 

The quantitative agreement among datasets examined here boosts our confidence in the 302 

reliability of the convective transition statistics as model diagnostic tools. Meanwhile, given 303 

that the same TMIv7.1 CWV and Reanalysis-2 temperature are used for compiling the statistics, 304 

we advise caution that the robustness of the statistics to TMIv7.1 vs. PR precipitation may 305 

simply reflect the efforts of calibration among datasets. As indicated by the minor difference in 306 

the collapsed conditional probabilities in Fig. 3b, and as we shall see in Section 6, the two 307 

precipitation datasets do lead to quantitative differences in the distribution of precipitation, 308 

especially at high rain rate. 309 

 310 

3.5. Robustness to bulk measure of temperature 311 
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Thus far, 𝑞𝑠𝑎𝑡̂  appears to be a useful bulk measure of tropospheric temperature. As noted 312 

above, the critical value is not governed by 𝑞𝑠𝑎𝑡̂  in a simple way, with critical CWV increasing 313 

and critical CRH decreasing with 𝑞𝑠𝑎𝑡̂ .  314 

Figure 4 shows the temperature profile, conditioned on precipitation and 𝑞𝑠𝑎𝑡̂ , relative to 315 

the mean profile (referred to as a perturbation). The perturbed profile evolves coherently in the 316 

vertical as a function of 𝑞𝑠𝑎𝑡̂ , explaining the usefulness of a bulk temperature measure such as 317 

𝑞𝑠𝑎𝑡̂ , or the mass-weighted column-averaged temperature �̂� adopted in previous studies (e.g., 318 

Holloway and Neelin 2007; Sahany et al. 2012). The profiles are similar across basins, except for 319 

the high- and low-𝑞𝑠𝑎𝑡̂  bins in the tropical Indian Ocean showing greater (smaller) anomaly in 320 

the lower (upper) troposphere. This is likely a consequence of the circulation pattern driven by 321 

the local land-ocean contrast, since both the warmest and coldest events in this domain tend to 322 

occur near the south Asian continent in the Bay of Bengal and Arabian Sea (Fig. S13). The 323 

resulting statistics in Figs. 1-3, nevertheless, do not reflect this difference in temperature 324 

structure. Replacing the condition on precipitation by CWV above critical, or replacing 𝑞𝑠𝑎𝑡̂  by �̂�, 325 

leads to similar profiles. For 𝑞𝑠𝑎𝑡̂  higher than the most probable bin, the corresponding overall 326 

(perturbed + mean) temperature profiles are insensitive to conditions on precipitation or CWV, 327 

suggesting that high-𝑞𝑠𝑎𝑡̂  events result from previous or nearby convective activity, consistent 328 

with convection being the major heating mechanism in the tropical troposphere. 329 

The two bulk measures 𝑞𝑠𝑎𝑡̂  and �̂�, both of which have similar properties in characterizing 330 

convection, are well-correlated because of the vertical coherence of temperature (Section S2). 331 

It is nonetheless worth quantifying in detail their similarity as bulk temperature measures for 332 

the statistics because of the nonlinear dependence of precipitation statistics on the 333 

thermodynamic variables. The lower panels of Figs. 2-3 show the similar statistics 334 

corresponding to their upper-panel counterparts, but use �̂� instead as the bulk measure (other 335 

basins in Fig. S5). From these two figures, substituting one bulk measure by another only leads 336 

to minor quantitative differences, e.g., a slightly smaller slope 𝛼 for conditional precipitation 337 

(Figs. 2a vs 2e), and slightly more precipitating events for CWV right below critical for cold bins 338 

when 𝑞𝑠𝑎𝑡̂  is used (Figs. 2d vs 2h). This insensitivity to the bulk measure of temperature also 339 

holds for statistics presented in Figs. 5 and 7-9 below. Note that the vertically coherent 340 

temperature structure in the presence of convection guarantees that layered bulk measures 341 

(e.g., 850-500 hPa-integrated saturation humidity, etc.) can also be useful and would lead to 342 

similar statistics (e.g., Figs. 1 and 3 in Neelin et al. 2009), except for the PDF of all events for 343 

CWV significantly lower than critical, which could differ qualitatively (not shown). 344 

 345 

4. Geographical dependence of precipitation pickup 346 
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The statistics in Figs. 2-3 demonstrate that CWV above critical is a practical estimator of 347 

conditional instability, and hence precipitation, with the temperature dependence 348 

characterized by the 𝑤𝑐-temperature relation [𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) or 𝑤𝑐(�̂�)]. These relations seem to be 349 

universal across ocean basins, at basin scales. However, other factors contributing to 350 

conditional instability – vertical degrees of freedom of temperature and moisture structure not 351 

captured by the bulk measures used here, large-scale convergence/divergence, radiative 352 

forcing associated with existing clouds or the lack thereof, and triggering of convection because 353 

of cold pool expansion from organized systems or land-sea breeze in coastal regions – may vary 354 

geographically, causing geographic variations at regional scales (e.g., Torri et al. 2015; 355 

Bergemann and Jakob 2016; Ahmed and Schumacher 2017). As such, the effectiveness of CWV 356 

above critical as a predictor of precipitation at regional scales is examined in this section. 357 

As background for our discussion, Fig. 5a shows the probability of precipitation (𝑃 > 0.25 mm 358 

hr-1; details in caption). The probability of high CWV (relative to critical; Fig. S14a) is included in 359 

Section S7. These maps of probability of precipitation and high CWV reflect the climatology of 360 

precipitation (Fig. S14b), sharply contrasting the major convergence zones with regions 361 

elsewhere. 362 

Figure 5b shows the corresponding conditional probability of precipitation given high CWV, 363 

formally defined as 364 

𝑃𝑟𝑜𝑏(𝑃 > 0.25 𝑚𝑚 ℎ𝑟−1|𝑐𝑤𝑣 > 𝑤𝑐 − 1.5 𝑚𝑚) ≡365 

# 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑃>0.25 𝑚𝑚 ℎ𝑟−1 & 𝑐𝑤𝑣>𝑤𝑐−1.5 𝑚𝑚

# 𝑜𝑓 𝑜𝑐𝑐𝑟𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑤𝑣>𝑤𝑐−1.5 𝑚𝑚
, 366 

as a function of geographical location. Here the critical value 𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) is from Fig. 3c, averaged 367 

over four basins (adopting basin-dependent critical values only introduces small discontinuities 368 

in 𝑤𝑐 hence the conditional probability across basin boundaries). The most outstanding feature 369 

in Fig. 5b is that the conditional probability is far smoother than the probability of precipitation 370 

in Fig. 5a. To the extent that there are geographic variations, the conditional probability 371 

scarcely reflects the features of precipitation climatology. Thus, including CWV relative to 372 

critical and the dependence of critical on temperature has yielded a probability measure that is 373 

much less dependent on space. 374 

To a first approximation, the CWV value relative to critical thus provides information that 375 

will apply reasonably well across a large portion of the Tropics. Furthermore, compiling the 376 

statistics presented in Fig. 3 inside and outside regions with high seasonal precipitation yields 377 

quantitatively similar results (not shown; refer to Fig. 3 since the corresponding collapsed 378 

statistics and critical values are visually indistinguishable), reaffirming that these statistics focus 379 

on the occurrences of convection at fast timescales rather than long-term climatology. 380 
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Minor geographic variations may be noted in Fig. 5b, e.g., the contrast between the lower 381 

values around the Maritime Continent and along the equator in the eastern Pacific, and the 382 

higher values off the equator in the central-to-eastern Pacific and Atlantic. The conditional 383 

probability is not defined over dry regions covered by marine stratocumulus (there are not 384 

above-critical events occurring in these locations); where it is defined, there is large uncertainty 385 

associated with small sample size along the edges of the dry regions (e.g., along 10° S in the 386 

eastern Pacific). The extreme low values in some coastal regions (~ 2.5° in width, the resolution 387 

of Reanalysis-2 data) could be due to physical coastal effects (Bergemann and Jakob 2016). 388 

However, local decreases in the temperature (Fig. 3 in Kuo et al. 2017) suggest they are more 389 

likely due to the erroneously lower 𝑞𝑠𝑎𝑡̂  (and hence 𝑤𝑐) and spurious occurrence of above-390 

critical events arising from land-ocean temperature contrasts and spatial interpolation.  391 

Figures 5c and 5d further quantify spatial and temporal dependence of this conditional 392 

probability. Figure 5c shows the same conditional probability as in Fig. 5b, but at 1°. Coarse-393 

graining in space leads to the same spatial pattern (or the lack thereof) and, with the 0.25-mm 394 

hr-1 threshold adopted here, uniformly greater magnitude in conditional probability, consistent 395 

with the dependence on resolution shown in Figs. 1-2. That is, CWV above critical serves as a 396 

precipitation estimator with more certainty at scales comparable to or larger than the 397 

autocorrelation spatial scale of precipitation. 398 

Figure 5d shows the conditional probability as in Fig. 5b, but incorporating 3B42 399 

precipitation (details in caption). Here, including two additional 3B42 precipitation rate values 400 

effectively provides one more independent snapshot of precipitation taken in the period of 0 to 401 

4.5 hours prior to or after the TMIv7.1 measurement is acquired. The resulting conditional 402 

probability in Fig. 5d therefore quantifies the probability of observing at least one precipitating 403 

event from the two datasets, consecutive in time but randomly separated by up to 4.5 hours, 404 

given that CWV exceeds critical. Note that here the CWV value relative to critical is treated as 405 

approximately constant because of the long autocorrelation timescales of CWV and 406 

temperature.  407 

As expected, the conditional probability in Fig. 5d (at 0.25°) is everywhere greater than its 408 

counterpart in Fig. 5b, and a similar map compiled at 2° is uniformly greater than 85% over 409 

tropical oceans (not shown). These suggest that, at scales comparable to the autocorrelation 410 

spatial and temporal scales of CWV, an above-critical event is almost certainly accompanied by 411 

precipitation before decreasing to below-critical. While precipitation has much shorter 412 

autocorrelation timescales, the comparison of Figs. 5b and 5d has ruled out the simplest 413 

hypothesis that the two consecutive-in-time measurements of precipitation can be treated as 414 

independent random events (not shown). 415 
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Figure 5e shows the fraction of total precipitation from above-critical events, which are 416 

responsible for most of the precipitation over tropical oceans (except in dry regions). It also 417 

captures the seasonal shifts of convergence zones, e.g., the local maximum along 10° S in the 418 

Indian Ocean and between 0-10° S in the eastern Pacific results from events during the 419 

Southern Hemisphere raining seasons. 420 

Note that Fig. 5e [and the conditional probability 421 

𝑃𝑟𝑜𝑏(𝑐𝑤𝑣 > 𝑤𝑐 − 1.5 𝑚𝑚|𝑃 > 0.25 𝑚𝑚 ℎ𝑟−1); Fig. S14d] has a geographic pattern similar to 422 

Fig. 17 in Tao and Moncrieff (2009; TM09; fraction of precipitation from mesoscale convective 423 

systems) with some coastal exceptions. This similarity suggests that organized systems are 424 

important contributors to precipitation above critical (see also Moncrieff et al. 2017). As we 425 

have seen in Figs. 1-2, the conditional precipitation and PDF of CWV are robust to spatial 426 

resolution (up to ~ 1°) – in addition to the autocorrelation spatial scale of CWV being greater 427 

than that of precipitation, organized systems could play a role in this robustness. 428 

Finally, Figure 5f shows an example for ascending orbits on a particular day, showing the 429 

regions where CWV is close to or above critical, i.e., a realization of the conditional probability 430 

in Fig. 5c for those snapshots on each orbit. Precipitation values exceeding 0.25 mm hr-1 are 431 

overlaid. It may be seen that precipitation mainly occurs in the near- or above-critical regions 432 

sporadically, consistent with the probabilities shown in the earlier panels. Thus, the estimates 433 

of near- or above-critical CWV-temperature environment may have useful applications as 434 

predictors of precipitation (see also Section S7), making the known association of precipitation 435 

with high CWV (e.g., Mapes et al. 2006) more quantitative. 436 

 437 

5. Sensitivity to time-averaging 438 

Satellite retrievals provide snapshots of CWV and precipitation covering basin-scale areas 439 

and, unlike most ground-based data, contain enough events for the compiled statistics to be 440 

stable, i.e., insensitive to noise. However, when these statistics apply to model diagnostics – 441 

given that most current models output at sub-daily frequencies (e.g., 6- or 12-hourly means) 442 

and higher frequency output (e.g., hourly or time-step mean/snapshot) are not standard yet – 443 

the validity of the model vs. retrieval comparison must be addressed. To quantify the 444 

dependence on coarse-graining in time, we turn to ground-based measurements that have 445 

more extensive time-domain information.  446 

Figure 6 shows statistics from tropical ARM site measurements with different time-averaging 447 

(not conditioned on temperature). At these sites, the temperature range in terms of �̂� is 448 

narrow, with ~ 1-2 K variation, and hence the overall statistics are dominated by the most 449 

probable temperature bin. The conditional precipitation (1st col.) and frequency density for all 450 
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events (3rd col.; crosses) are relatively insensitive to time-averaging up to 6 hours, with Nauru 451 

being more sensitive than the other two sites. Conditional probability (2nd col.; 𝑃 > 0.5 mm hr-1) 452 

increases with time-averaging, reflecting the sensitivity of the joint-PDF of CWV and 453 

precipitation. There are quantitative differences among these sites, but there is not a clear 454 

qualitative difference or contrast between oceanic vs. continental environments regarding the 455 

dependence on time-averaging. The sharpness of the pickup tends to be smoothed out by the 456 

averaging, resulting from averaging sub-daily instances of high CWV, high precipitation times 457 

with lower values. Overall, however, the results in Fig. 6 suggest that, while instantaneous or 458 

hourly data are desirable for insights into the fast-timescale behavior, statistics from 3- or 6-459 

hourly mean data can be used for model comparisons, extending the applicability of using these 460 

statistics as diagnostic tools. 461 

 462 

6. Joint-PDF of CWV and precipitation, and its resolution/instrument dependence 463 

As mentioned in Section 4, bulk measures like CWV and 𝑞𝑠𝑎𝑡̂  (or �̂�) can represent large-scale 464 

factors that affect conditional instability. However, given the same condition at large scales, 465 

one would still expect a distribution of precipitation because there are processes at smaller 466 

scales or large-scale factors that are unaccounted for by the bulk measures. In this section, we 467 

examine the joint-PDF of CWV and precipitation, and its dependence on spatial resolution and 468 

instrumentation, to quantify the uncertainty associated with the use of the bulk measures. This 469 

joint-PDF can be another useful metric for model diagnostics. 470 

Figure 7a shows the joint-PDF of CWV (relative to critical) and precipitation rate 𝑃 for the 70-471 

mm 𝑞𝑠𝑎𝑡̂ -bin (2nd most probable) in the tropical western Pacific compiled using PR (2A25) 472 

precipitation at 0.25°. This 𝑞𝑠𝑎𝑡̂  bin is chosen instead of the most probable bin (74.5 mm) 473 

because for the latter, the 75-mm cap of TMIv7.1 CWV results in the CWV value relative to 474 

critical being capped at ~ 11 mm, and hence the PDF of the highest CWV is missing. The same 475 

joint-PDF is plotted in Fig. 7b on a log-log scale. Non-precipitating bins (0 ≤ 𝑃 < 0.05 mm hr-1) 476 

aside, the joint-PDF is quantitatively similar across the 𝑞𝑠𝑎𝑡̂  range and ocean basins (Section S5). 477 

For CWV below critical, the PDF in Fig. 7a drops sharply as 𝑃 increases. As the CWV increases 478 

and approaches critical, the PDF increases for all 𝑃 > 0 with long tails extending into high 479 

precipitation regime. This occurs until the CWV reaches critical, above which the PDF starts to 480 

decrease, with a local PDF maximum developing at a positive 𝑃 (~ 3 mm hr-1) for the highest 481 

CWV bin. From Figs. 7a and 7b (the same joint-PDF on different scales), there is not a clear 482 

power-law or exponential dependence of the PDF on precipitation, although a possible 483 

functional form will be discussed further below. 484 
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Note that the distribution of 𝑃 is asymmetric, with the most probable value being (close to) 485 

zero even for CWV around critical. As such, any Gaussian-like distribution (Lin and Neelin 2003) 486 

or on-and-off precipitation model (Muller et al. 2009; Stechmann and Neelin 2014) with the 487 

observed conditional mean and variance would miss much of the distribution details. 488 

The radar-based precipitation retrievals are probably more reliable than the passive 489 

microwave radiometer counterpart (including TMI) since the latter is based solely on a path-490 

integrated signal without phase information (Chen et al. 2013). The conditional precipitation 491 

and probability of precipitation in Fig. 3 demonstrate that PR 2A25 and TMIv7.1 precipitation 492 

are consistent in terms of the mean and distribution of low-to-moderate precipitation. 493 

However, there are quantitative discrepancies for high precipitation between the two datasets. 494 

Figure 7c shows the similar joint-PDF as in Fig. 7a, but using TMIv7.1 precipitation instead. In Fig. 495 

7c, there is a clear cutoff at 𝑃 ~ 10 mm hr-1 and practically no events for > 15, despite the cap 496 

set by the algorithm is 25. This is an undesirable characteristic of the retrieval algorithm when 497 

applied to the Tropics (there is no sign of a cutoff in the extratropics; not shown). Besides the 498 

cutoff, the joint-PDFs for 𝑃 < 10 mm hr-1 are similar for PR and TMIv7.1, with minor quantitative 499 

differences, e.g., the local PDF maximum at high CWV occurs at higher precipitation for TMIv7.1. 500 

Thus, we shall not emphasize the distribution of precipitation from TMIv7.1 precipitation, 501 

except for using it as an aid to study its dependence on spatial resolution. 502 

Figure 8 shows the joint-PDF of CWV (relative to critical) and 𝑃 compiled at different spatial 503 

resolutions (details in caption). The two panels for 0.25° show the same joint-PDFs as in Figs. 7a 504 

and 7c, but with a different CWV bin-width. 505 

In terms of the general features, the joint-PDFs in Fig. 8 exhibit clear asymmetries between 506 

the low-CWV—low-precipitation regime and regime near critical. However, in the vicinity of 507 

critical (roughly ± 3 mm), the joint-PDFs are roughly symmetric with respect to CWV, consistent 508 

with Figs. 2d and 2h. As CWV increases, the fraction of non-precipitating events decreases, as 509 

indicated by the conditional probability of precipitation (orange dots; 𝑃 > 0) and the bands at 510 

the bottom for the top 3 panels (PDFs for 0 ≤ 𝑃 < 0.05 mm hr-1). This and the extension of PDF 511 

into high-precipitation around critical result in the sharp increase in the conditional mean (blue 512 

solid line), median (white solid), and variance (blue dashed) of precipitation. These 3 513 

conditional statistics, when calculated by excluding non-precipitating pixels, would still show a 514 

sharp pickup around critical with slightly higher values for CWV below (not shown). Both the 515 

precipitation distribution for 𝑃 > 0 and its contrast to non-precipitating events (i.e., 𝑃 > 0 vs. 𝑃 = 516 

0) contribute to the overall variance of precipitation (Stechmann and Neelin 2011). 517 

In addition to the differences of PR and TMIv7.1 shown in Fig. 7, the conditional probability 518 

for PR at 0.25° in Fig. 8 is noticeably higher than its TMIv7.1 counterpart for CWV lower than 519 

critical, partly because of the differences in instrument sensitivity and native resolution of the 520 
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datasets. Recall in Fig. 3 that the conditional mean and probability (with respect to a different 521 

1.05-mm hr-1 threshold) from PR and TMIv7.1 are extremely close. Despite this, the two 0.25° 522 

panels in Fig. 8 show that the TMIv7.1 precipitation tends to underestimate the variance of 523 

precipitation for CWV around and above critical. Furthermore, the TMIv7.1 conditional median 524 

approaches mean at high CWV, implying a more symmetric distribution of precipitation, 525 

consistent with the corresponding PDFs in Fig. 7c. 526 

As for the dependence on spatial resolution shown in Fig. 8, there are more weakly 527 

precipitating events (e.g., 0 < 𝑃 < 2 mm hr-1) in the expense of non-precipitating and heavily 528 

precipitating events at lower resolutions, consistent with spatial-averaging, which also results in 529 

the conditional probability increasing and variance decreasing with resolution. 530 

Figure 9 shows the precipitation contribution as a function of CWV and 𝑃 for the 70-mm 531 

𝑞𝑠𝑎𝑡̂ -bin in the tropical western Pacific on different scales. In Fig. 9a, the areas under the curve 532 

integrated to the mean precipitation rate for this 𝑞𝑠𝑎𝑡̂ . While the largest contributions come 533 

from near critical, values below or above critical still contribute substantially. The relatively 534 

linear range in Fig. 9b appears to suggest that a 𝑃−1𝑒−𝛽𝑃 dependence with 𝛽 ~ 0.16 (mm hr-1)-1 535 

might be a reasonable approximation for moderate to high precipitation for a wide range of 536 

CWV. In both Figs. 9b and 9c, the value of 𝑃 at which the precipitation contribution is a 537 

maximum moves towards higher 𝑃 as CWV increases. 538 

Overall, the distributions of precipitation discussed in this section underline the importance 539 

of considering the dependence of the precipitation PDF on where the CWV-temperature 540 

environment is relative to critical, rather than as a single PDF for total precipitation. 541 

 542 

7. Summary and discussion 543 

In this work, the convective transition statistics over tropical oceans are compiled using 544 

satellite retrievals and ARM site measurements to quantify the dependence of precipitation on 545 

the water vapor and tropospheric temperature environment, and to provide an observational 546 

baseline for comparison in using these statistics as model diagnostics at fast (convective) 547 

timescales. 548 

The mean tropospheric temperature profiles conditioned on precipitation (𝑃 > 0.25 mm hr-1; 549 

Fig. 4) show vertically coherent structure, justifying the use of bulk tropospheric temperature 550 

measures like column-integrated saturation humidity 𝑞𝑠𝑎𝑡̂ , mass-weighted column average 551 

temperature �̂�, or other layered equivalents as the leading order description of temperature in 552 

defining the convective transition statistics. Using these temperature measures yields 553 

quantitatively similar statistics, e.g., those shown in Figs. 2-3, including the conditional 554 
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precipitation and probability of precipitation, critical CWV 𝑤𝑐, and PDFs of CWV for 555 

precipitating events, though the PDFs of CWV for all events below critical may differ 556 

significantly, reflecting the differences in the climatology of these temperature measures. 557 

Because of the narrow temperature range in the tropics, the conversion among these 558 

temperature measures can be carried out using simple linear relations found by regression. 559 

Among the robust features of the precipitation-CWV relation is the conditional precipitation 560 

as a function of CWV and tropospheric temperature, which is insensitive to spatial resolution 561 

(Figs. 1-3) and time-averaging (Fig. 6), consistent with the assertion that the autocorrelation 562 

spatial and temporal scales of CWV and temperature are much greater than that of 563 

precipitation. This is particularly useful for model comparison since model output is subject to 564 

varying spatial-temporal resolution. Because of this insensitivity, 𝑤𝑐 and the slope α 565 

characterizing the precipitation pickup are defined through the conditional precipitation. Both 566 

𝑤𝑐 and α are approximately constant across ocean basins, with the latter being insensitive to 567 

temperature over the most common range in the tropics. The dependence of the precipitation-568 

CWV relation on temperature is completely characterized by 𝑤𝑐 in the sense that shifting CWV 569 

by 𝑤𝑐 collapses the convective transition statistics and the joint-PDFs of CWV and precipitation. 570 

The dependence of 𝑤𝑐 on temperature is, however, not a simple relation. Convective onset 571 

occurs at higher CWV but at lower column relative humidity (CRH) with increasing temperature, 572 

as noted in Neelin et al. (2009), and is consistent with the entraining plume calculations by 573 

Sahany et al. (2012). At low temperatures, which lie along the subtropical margin of the domain, 574 

critical values could plausibly be approximated by a constant CRH within a small regime. This 575 

regime likely corresponds to the subtropical expression of mid-latitude frontal systems. For the 576 

most common behavior in the tropical domain, we underline that using CRH as a variable, 577 

without separately quantifying the water vapor-temperature dependence, would yield a poor 578 

characterization of the statistics, as expected because of the dominance of conditional 579 

instability as a source of tropical convective events. 580 

Robustness of the presented statistics to instrumentation is examined by comparing various 581 

datasets, including precipitation radar, microwave retrievals and in situ data. A major source of 582 

uncertainty in the convective transition statistics is the measurement of CWV in the presence of 583 

precipitation. Sensitivity to CWV gap-filling is quantified, which primarily affects probability 584 

distributions at very high CWV (above critical). Despite the differences in precipitation 585 

distribution, especially at high rain rate, associated with different datasets as indicated by the 586 

joint-PDFs (Figs. 7-8), both conditional precipitation and probability of precipitation are robust 587 

to instrumentation (including ground-based measurements of the former; Fig. 3). This 588 

consistency likely reflects the calibration among precipitation datasets, and emphasizes the 589 

reliability of these statistics as observational references for model diagnostics. 590 
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At the timescale of the individual retrieval, the tendency of precipitation to coincide with 591 

high CWV has been observed. Here, this is quantified more precisely by including the 592 

dependence on tropospheric temperature. Specifically, CWV relative to critical (𝑐𝑤𝑣 − 𝑤𝑐) 593 

appears to be a useful predictor of precipitation over tropical oceans. Unlike the climatology of 594 

precipitation or CWV that shows sharp contrast between major convergence zones and regions 595 

elsewhere, the conditional probability of precipitation given CWV exceeding critical shows only 596 

minor geographic variations (Fig. 5). In other words, the convective transition statistics created 597 

from individual convective events conditioned on two bulk measures of the temperature—598 

water-vapor environment apply reasonably universally through the tropics even at the 599 

individual space-time point. Small departures are noted that are presumably due to other 600 

vertical degrees of freedom impacting convection. At larger spatial scales and sub-daily 601 

timescales, events of high CWV relative to critical are almost certainly associated with 602 

convection, leading to a potential application of using CWV above critical as a precipitation 603 

predictor. A connection between above-critical events and mesoscale convective systems (Fig. 604 

5e vs. TM09’s Fig. 7) is noted, which could contribute to the robustness of conditional 605 

precipitation to spatial resolution (up to ~ 1°). A recent analysis of the GOAmazon campaign 606 

data also points to the potential importance of organized flow in creating the dependence of 607 

deep convection on lower tropospheric water vapor through a deep layer (Schiro et al. 2017) 608 

that is seen here as the CWV dependence of precipitation. 609 

It is common to discuss probability distributions of precipitation and to compare models to 610 

these (e.g., Figs. 8 and 13 in Klingaman et al. 2017). However, the strong dependence of the 611 

statistics on CWV relative to critical suggests that much of the important dynamics depend on 612 

the temperature—water-vapor environment of the precipitating system. We extend the scope 613 

of the precipitation-CWV relation to include the joint-PDF of CWV relative to critical and 614 

precipitation rate 𝑃. This joint-PDF is quantitatively similar in the most common temperature 615 

range across tropical ocean basins. For low CWV (relative to critical) the PDF drops rapidly as 𝑃 616 

increases. As CWV increase, the PDF extends into high precipitation regime, and develops a 617 

peak at a non-zero 𝑃 (~ 3 mm hr-1) for the highest CWV (Fig. 7a), with most of the precipitation 618 

contribution from CWV around and above critical (mostly 𝑃 < 10 mm hr-1; Fig. 9a). 619 

Examination of the precipitation contributions suggests that the conditional distribution of 620 

precipitation in the PR 2A25 data can be approximated by the functional form 𝑃−1𝑒−𝛽𝑃 with 𝛽 621 

~ 0.16 (mm hr-1)-1 for sufficiently high 𝑃, for a wide range of CWV (Fig. 9b). This would 622 

correspond to a gamma distribution at the limit of its range of validity, except that there is a 623 

clear low-precipitation cutoff in the precipitation contribution that changes systematically as a 624 

function of CWV above critical. This apparently simple observational relationship in 625 

precipitation distributions as a function of CWV relative to critical can potentially provide an 626 

interesting target for theoretical work. 627 
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The joint-PDF does exhibit dependence on spatial averaging, with the joint-PDF exhibiting 628 

more light precipitation at the expense of non-precipitating and heavily precipitating events, at 629 

lower spatial resolution (Fig. 8). This resolution dependence results in the dependence of 630 

conditional probability of precipitation on resolution, as in Figs. 1-3. There is not enough 631 

observational data to compile the joint-PDF at resolutions most common for current models (~ 632 

1°) without losing information for the highest CWV, but qualitative dependence of the joint-PDF 633 

on distance above critical can be used as an auxiliary diagnostic tool for the evaluation of 634 

modeled convective parameterizations.  635 

Overall, in addition to providing an observational baseline with quantified robustness and 636 

resolution dependence of the basic convective transition statistics for model comparison, the 637 

ability to summarize statistics in terms of CWV relative to critical enables additional diagnostics. 638 

The dependence of precipitation probability on this quantity expands the set of related 639 

properties that exhibit common behavior for precipitation throughout the tropics.  640 
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Figure captions 818 

Figure 1: (a) Conditionally averaged precipitation rate; (b) conditional probability of 819 

precipitation; (c) probability density function of all events, and (d) precipitating events only as a 820 

function of CWV and 𝑞𝑠𝑎𝑡̂  (units: mm) for the tropical (20°S-20°N) western Pacific. (e)-(h) Same 821 

statistics, but for the tropical eastern Pacific, (i)-(l) for Atlantic, and (m)-(p) for Indian Ocean. 822 

Results are shown using TMIv7.1 data and Reanalysis-2 temperature compiled at 0.25° (colored 823 

markers) and 0.5° (dots). Underpopulated bins at 0.25° (PDF < 10-5) are indicated by open 824 

circles, and those for 0.5° are omitted. Triangles represent the corresponding 𝑞𝑠𝑎𝑡̂  values. Here, 825 

precipitating events are defined by 𝑃 > 1.05 mm hr-1. The CWV data is gap-filled using nearest 826 

available values, and data from pixels within 2.5° of land are excluded to avoid potentially 827 

erroneous temperature values arising from spatial interpolation. The standard errors associated 828 

with the conditional precipitation are smaller than the marker size, and omitted. The 829 

corresponding statistics compiled using �̂� as the bulk tropospheric temperature measure are 830 

plotted in Fig. S4. 831 

Figure 2: (a)-(d) Convective transition statistics for the tropical western Pacific as in Figs. 1a-1d 832 

for 0.25° (colored markers) and 0.5° (dots), but for each marker/dot shifted by the 833 

corresponding critical CWV (𝑤𝑐) from Fig. 3c, and with PDFs scaled. The best-fit for conditional 834 

precipitation is shown as gray line in (a), with its slope indicated by 𝛼. (e)-(h) Same as (a)-(d), 835 

but using �̂� instead of 𝑞𝑠𝑎𝑡̂  as the bulk tropospheric temperature measure. The colored 836 

triangles represent average 𝑞𝑠𝑎𝑡̂  conditioned on �̂� and CRH (≡CWV/𝑞𝑠𝑎𝑡̂ ) > 60%, shifted by 𝑤𝑐. 837 

The corresponding plots for the other basins are in Figs. S5 and S6. 838 

Figure 3: (a) Collapsed conditional precipitation and (b) probability of precipitation; (c) critical 839 

CWV 𝑤𝑐 and (d) critical CRH (≡𝑤𝑐/𝑞𝑠𝑎𝑡̂ ) for tropical oceans using 𝑞𝑠𝑎𝑡̂  as the bulk tropospheric 840 

temperature measure. (e)-(h) Same as (a)-(d), but using �̂� instead of 𝑞𝑠𝑎𝑡̂  as the bulk 841 

temperature. The conditional precipitation [(a), (e)] and probability of precipitation [(b), (f); 𝑃 > 842 

1.05 mm hr-1] are compiled for 3 combinations of datasets: (i) TMIv7.1 CWV and precipitation 843 

(colored dots) with underpopulated bins plotted as open circles, (ii) TMIv7.1 CWV and PR 2A25 844 

precipitation (gray dots) excluding underpopulated bins, and (iii) ARM site CWV and 845 

precipitation measurements from Manus (diamonds) and Nauru (squares) Islands in the tropical 846 

western Pacific (WPac). Reanalysis-2 temperature is used for (i)-(iii). For (i) and (ii), bins from all 847 

four basins are plotted, with data at 0.25° resolution and coastal regions excluded. For (iii), the 848 

CWV values are shifted by the corresponding 𝑤𝑐 given the temperature (𝑞𝑠𝑎𝑡̂  or �̂�) time series 849 

according the 𝑤𝑐-temperature relation for WPac [as in (c) and (g)]. The critical CWV [(c), (g)] 850 

and critical CRH [(d), (h)] are calculated for combinations (i) and (ii), respectively. The colored 851 

solid lines in (c) and (g) represent 𝑞𝑠𝑎𝑡̂  conditioned on temperature and CRH (≡CWV/𝑞𝑠𝑎𝑡̂ ) > 60%. 852 
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This conditional 𝑞𝑠𝑎𝑡̂  is also used in defining the critical CRH. The gray lines in (c) represent CRH 853 

from 100% to 80% with 2% spacing. 854 

Figure 4: Reanalysis-2 temperature profiles conditionally averaged on TMIv7.1 precipitation and 855 

𝑞𝑠𝑎𝑡̂ . Profiles are anomalies with respect to the mean profile averaged over all precipitating 856 

events (𝑃 > 0.25 mm hr-1) with coastal regions excluded. 857 

Figure 5: (a) The probability of precipitation as a function of geographical location, calculated 858 

using TMIv7.1 precipitation at 0.25° resolution. (b) The conditional probability of precipitation 859 

given CWV exceeding critical, calculated using TMIv7.1 CWV and precipitation, and Reanalysis-2 860 

temperature at 0.25°. Here the conditional probability is calculated from the frequency binned 861 

by 𝑐𝑤𝑣 − 𝑤𝑐(𝑞𝑠𝑎𝑡̂ ), 𝑃, and geographical location, with 𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) as in Fig. 3c averaged over four 862 

basins. (c) Same as in (b) but at 1°. (d) Same as in (b), but with 𝑃 defined as the maximum of the 863 

TMIv7.1 precipitation rate and two additional 3B42 precipitation rates that are closest in time 864 

to the TMIv7.1 measurement. (e) The fraction of total precipitation from events with CWV 865 

exceeding critical, calculated using data as in (b) at 0.25°. (f) Precipitation rate (for 𝑃 ≥ 0.25 mm 866 

hr-1) on top of regions of CWV exceeding critical using TMIv7.1 data at 1° for ascending orbits 867 

on 01 Jan 2004. Note that (f) is a realization of the conditional probability in (c) on a particular 868 

day. For (a)-(e), the precipitation threshold 0.25 mm hr-1 is chosen for comparison across spatial 869 

resolution, and CWV offset -1.5 mm to include more events. The magnitudes of 870 

probabilities/fraction in these panels depend on the precipitation threshold and CWV offset, 871 

while the corresponding geographic patterns appear to be robust. 872 

Figure 6: (Left) Precipitation rate with standard error as error bar, (center) probability of 873 

precipitation 𝑃 > 0.5 mm hr-1, and (right) frequency density of all events (crosses) and 874 

precipitating events (circles), all conditioned on CWV using ARM site microwave radiometer 875 

CWV and precipitation data for the GOAmazon site in the Amazon (top), and for Nauru (middle) 876 

and Manus (bottom) Islands in the tropical western Pacific. Here the statistics are calculated 877 

using CWV and precipitation data time-averaged at 15-min (dark red), 1-hr (red), 3-hr (yellow), 878 

6-hr (green), and 24-hr (blue) intervals. Conditional precipitation without error bar indicates a 879 

standard error smaller than the marker size. 880 

Figure 7: (a) Joint-PDF of CWV relative to critical and precipitation rate 𝑃 for the 70-mm 𝑞𝑠𝑎𝑡̂ -881 

bin in the tropical western Pacific compiled using TMIv7.1 CWV, Reanalysis-2 temperature and 882 

PR 2A25 precipitation at 0.25° by treating CWV and 𝑃 as continuous variables with bin-width 3 883 

mm, and 0.1 mm hr-1 (0.05 for lowest bin), respectively. (b) Same as in (a), but on a log-log scale. 884 

(c) Same as in (a), but using TMIv7.1 precipitation (0.25°). The colors indicate the values of CWV 885 

relative to 𝑤𝑐. 886 
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Figure 8: Color shading: Joint-PDF (units: mm-2 hr), on a log10-scale, of CWV relative to critical 887 

and precipitation rate 𝑃 for the 70-mm 𝑞𝑠𝑎𝑡̂ -bin in the tropical western Pacific compiled using 888 

TMIv7.1 CWV and Reanalysis-2 temperature, PR 2A25 (at 5 km and 0.25°) and TMIv7.1 (at 0.25°, 889 

0.5°, and 1°) precipitation, by treating CWV and 𝑃 as continuous variables. The spacing between 890 

the joint-PDF contours is 0.3, i.e., the color advances whenever the joint-PDF doubles (100.3 ~2). 891 

The corresponding precipitation rate (blue solid line), probability of precipitation (𝑃 > 0 mm hr-1; 892 

orange dots), median (white solid line) and variance (blue dashed line) of precipitation, all 893 

conditioned on CWV, are also shown for reference. For PR (at 5 km and 0.25°) and TMIv7.1 894 

(0.25°), the bands at the bottom indicate bins with 0 ≤ 𝑃 < 0.05 mm hr-1. Note that the 895 

minimum nonzero 𝑃 for raw PR data at 5 km is ~0.11 mm hr-1, and the TMIv7.1 precipitation at 896 

0.25° is discretized with units 0.1 mm hr-1.  897 

Figure 9: Precipitation rate-weighted Joint-PDF of CWV relative to critical and precipitation rate 898 

𝑃, i.e., the precipitation contribution as a function of CWV and 𝑃, for the 70-mm 𝑞𝑠𝑎𝑡̂ -bin in the 899 

tropical western Pacific. (a) linear axes; (b) log-linear axes; (c) log-log axes. The data correspond 900 

to the Joint-PDF of CWV relative to critical and 𝑃 in Fig. 7a, using PR 2A25 precipitation at 0.25°. 901 

The colors indicate the values of CWV relative to 𝑤𝑐.  902 
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 903 

 904 

Figure 1: (a) Conditionally averaged precipitation rate; (b) conditional probability of precipitation; (c) 905 

probability density function of all events, and (d) precipitating events only as a function of CWV and 𝑞𝑠𝑎𝑡̂  906 

(units: mm) for the tropical (20°S-20°N) western Pacific. (e)-(h) Same statistics, but for the tropical 907 

eastern Pacific, (i)-(l) for Atlantic, and (m)-(p) for Indian Ocean. Results are shown using TMIv7.1 data 908 

and Reanalysis-2 temperature compiled at 0.25° (colored markers) and 0.5° (dots). Underpopulated bins 909 

at 0.25° (PDF < 10-5) are indicated by open circles, and those for 0.5° are omitted. Triangles represent 910 

the corresponding 𝑞𝑠𝑎𝑡̂  values. Here, precipitating events are defined by 𝑃 > 1.05 mm hr-1. The CWV 911 

data is gap-filled using nearest available values, and data from pixels within 2.5° of land are excluded to 912 

avoid potentially erroneous temperature values arising from spatial interpolation. The standard errors 913 

associated with the conditional precipitation are smaller than the marker size, and omitted. The 914 

corresponding statistics compiled using �̂� as the bulk tropospheric temperature measure are plotted in 915 

Fig. S4.  916 
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 917 

 918 

Figure 2: (a)-(d) Convective transition statistics for the tropical western Pacific as in Figs. 1a-1d for 0.25° 919 

(colored markers) and 0.5° (dots), but for each marker/dot shifted by the corresponding critical CWV 920 

𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) from Fig. 3c, and with PDFs scaled. The best-fit for conditional precipitation is shown as gray 921 

line in (a), with its slope indicated by 𝛼. (e)-(h) Same as (a)-(d), but using �̂� instead of 𝑞𝑠𝑎𝑡̂  as the bulk 922 

tropospheric temperature measure. The colored triangles represent average 𝑞𝑠𝑎𝑡̂  conditioned on �̂� and 923 

CRH (≡CWV/𝑞𝑠𝑎𝑡̂ ) > 60%, shifted by 𝑤𝑐. The corresponding plots for the other basins are in Figs. S5 and 924 

S6.  925 
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 926 

 927 

Figure 3: (a) Collapsed conditional precipitation and (b) probability of precipitation; (c) critical CWV 𝑤𝑐 928 

and (d) critical CRH (≡𝑤𝑐/𝑞𝑠𝑎𝑡̂ ) for tropical oceans using 𝑞𝑠𝑎𝑡̂  as the bulk tropospheric temperature 929 

measure. (e)-(h) Same as (a)-(d), but using �̂� instead of 𝑞𝑠𝑎𝑡̂  as the bulk temperature. The conditional 930 

precipitation [(a), (e)] and probability of precipitation [(b), (f); 𝑃 > 1.05 mm hr-1] are compiled for 3 931 

combinations of datasets: (i) TMIv7.1 CWV and precipitation (colored dots) with underpopulated bins 932 

plotted as open circles, (ii) TMIv7.1 CWV and PR 2A25 precipitation (gray dots) excluding 933 

underpopulated bins, and (iii) ARM site CWV and precipitation measurements from Manus (diamonds) 934 

and Nauru (squares) Islands in the tropical western Pacific (WPac). Reanalysis-2 temperature is used for 935 

(i)-(iii). For (i) and (ii), bins from all four basins are plotted, with data at 0.25° resolution and coastal 936 

regions excluded. For (iii), the CWV values are shifted by the corresponding 𝑤𝑐 given the temperature 937 

(𝑞𝑠𝑎𝑡̂  or �̂�) time series according the 𝑤𝑐-temperature relation for WPac [as in (c) and (g)]. The critical 938 

CWV [(c), (g)] and critical CRH [(d), (h)] are calculated for combinations (i) and (ii), respectively. The 939 

colored solid lines in (c) and (g) represent 𝑞𝑠𝑎𝑡̂  conditioned on temperature and CRH (≡CWV/𝑞𝑠𝑎𝑡̂ ) > 60%. 940 

This conditional 𝑞𝑠𝑎𝑡̂  is also used in defining the critical CRH. The gray lines in (c) represent CRH from 941 

100% to 80% with 2% spacing.   942 
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 943 

Figure 4: Reanalysis-2 temperature profiles conditionally averaged on TMIv7.1 precipitation and 𝑞𝑠𝑎𝑡̂ . 944 

Profiles are anomalies with respect to the mean profile averaged over all precipitating events (𝑃 > 0.25 945 

mm hr-1) with coastal regions excluded.  946 
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 947 

Figure 5: (a) The probability of precipitation as a function of geographical location, calculated using 948 

TMIv7.1 precipitation at 0.25° resolution. (b) The conditional probability of precipitation given CWV 949 

exceeding critical, calculated using TMIv7.1 CWV and precipitation, and Reanalysis-2 temperature at 950 

0.25°. Here the conditional probability is calculated from the frequency binned by 𝑐𝑤𝑣 − 𝑤𝑐(𝑞𝑠𝑎𝑡̂ ), 𝑃, 951 

and geographical location, with 𝑤𝑐(𝑞𝑠𝑎𝑡̂ ) as in Fig. 3c averaged over four basins. (c) Same as in (b) but at 952 

1°. (d) Same as in (b), but with 𝑃 defined as the maximum of the TMIv7.1 precipitation rate and two 953 

additional 3B42 precipitation rates that are closest in time to the TMIv7.1 measurement. (e) The fraction 954 

of total precipitation from events with CWV exceeding critical, calculated using data as in (b) at 0.25°. (f) 955 

Precipitation rate (for 𝑃 ≥ 0.25 mm hr-1) on top of regions of CWV exceeding critical, using TMIv7.1 data 956 

at 1° for ascending orbits on 01 Jan 2004. Note that (f) is a realization of the conditional probability in (c) 957 

on a particular day. For (a)-(e), the precipitation threshold 0.25 mm hr-1 is chosen for comparison across 958 

spatial resolution, and CWV offset -1.5 mm to include more events; the magnitudes of 959 

probabilities/fraction in these panels depend on the precipitation threshold and CWV offset, while the 960 

corresponding geographic patterns appear to be robust.   961 
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962 
Figure 6: (Left) Precipitation rate with standard error as error bar, (center) probability of precipitation 𝑃 963 

> 0.5 mm hr-1, and (right) frequency density of all events (crosses) and precipitating events (circles), all 964 

conditioned on CWV using ARM site microwave radiometer CWV and precipitation data for the 965 

GOAmazon site in the Amazon (top), and for Nauru (middle) and Manus (bottom) Islands in the tropical 966 

western Pacific. Here the statistics are calculated using CWV and precipitation data time-averaged at 15-967 

min (dark red), 1-hr (red), 3-hr (yellow), 6-hr (green), and 24-hr (blue) intervals. Conditional precipitation 968 

without an error bar indicates a standard error smaller than the marker size.  969 
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 970 

Figure 7: (a) Joint-PDF of CWV relative to critical and precipitation rate 𝑃 for the 70-mm 𝑞𝑠𝑎𝑡̂ -bin in the 971 

tropical western Pacific compiled using TMIv7.1 CWV, Reanalysis-2 temperature and PR 2A25 972 

precipitation at 0.25° by treating CWV and 𝑃 as continuous variables with bin-width 3 mm, and 0.1 mm 973 

hr-1 (0.05 for lowest bin), respectively. (b) Same as in (a), but on a log-log scale. (c) Same as in (a), but 974 

using TMIv7.1 precipitation (0.25°). The colors indicate the values of CWV relative to 𝑤𝑐.  975 
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Figure 8: Color shading: Joint-PDF (units: mm-2 hr), on a 976 

log10-scale, of CWV relative to critical and precipitation 977 

rate 𝑃 for the 70-mm 𝑞𝑠𝑎𝑡̂ -bin in the tropical western 978 

Pacific compiled using TMIv7.1 CWV and Reanalysis-2 979 

temperature, PR 2A25 (at 5 km and 0.25°) and TMIv7.1 980 

(at 0.25°, 0.5°, and 1°) precipitation, by treating CWV 981 

and 𝑃 as continuous variables. The spacing between 982 

the joint-PDF contours is 0.3, i.e., the color advances 983 

whenever the joint-PDF doubles (100.3 ~2). The 984 

corresponding precipitation rate (blue solid line), 985 

probability of precipitation (𝑃 > 0 mm hr-1; orange 986 

dots), median (white solid line) and variance (blue 987 

dashed line) of precipitation, all conditioned on CWV, 988 

are also shown for reference. For PR (at 5 km and 0.25°) 989 

and TMIv7.1 (0.25°), the bands at the bottom indicate 990 

bins with 0 ≤ 𝑃 < 0.05 mm hr-1. Note that the minimum 991 

nonzero 𝑃 for raw PR data at 5 km is ~0.11 mm hr-1, 992 

and the TMIv7.1 precipitation at 0.25° is discretized 993 

with units 0.1 mm hr-1. 994 

  995 
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 996 

Figure 9: Precipitation rate-weighted Joint-PDF of CWV relative to critical and precipitation rate 𝑃, i.e., 997 

the precipitation contribution as a function of CWV and 𝑃, for the 70-mm 𝑞𝑠𝑎𝑡̂ -bin in the tropical 998 

western Pacific. (a) linear axes; (b) log-linear axes; (c) log-log axes. The data correspond to the Joint-PDF 999 

of CWV relative to critical and 𝑃 in Fig. 7a, using PR 2A25 precipitation at 0.25°. The colors indicate the 1000 

values of CWV relative to 𝑤𝑐. 1001 


