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ABSTRACT

Motivated by an attempt to augment dynamical models in predicting the Madden–Julian oscillation
(MJO), and to provide a realistic benchmark to those models, the predictive skill of a multivariate lag-
regression statistical model has been comprehensively explored in the present study. The predictors of the
benchmark model are the projection time series of the leading pair of EOFs of the combined fields of
equatorially averaged outgoing longwave radiation (OLR) and zonal winds at 850 and 200 hPa, derived
using the approach of Wheeler and Hendon. These multivariate EOFs serve as an effective filter for the
MJO without the need for bandpass filtering, making the statistical forecast scheme feasible for the real-
time use. Another advantage of this empirical approach lies in the consideration of the seasonal dependence
of the regression parameters, making it applicable for forecasts all year-round. The forecast model exhibits
useful extended-range skill for a real-time MJO forecast. Predictions with a correlation skill of greater than
0.3 (0.5) between predicted and observed unfiltered (EOF filtered) fields still can be detected over some
regions at a lead time of 15 days, especially for boreal winter forecasts. This predictive skill is increased
significantly when there are strong MJO signals at the initial forecast time. The analysis also shows that
predictive skill for the upper-tropospheric winds is relatively higher than for the low-level winds and
convection signals. Finally, the capability of this empirical model in predicting the MJO is further demon-
strated by a case study of a real-time “hindcast” during the 2003/04 winter. Predictive skill demonstrated in
this study provides an estimate of the predictability of the MJO and a benchmark for the dynamical
extended-range models.

1. Introduction

Since its discovery in the early 1970s, the significant
role of the Madden–Julian oscillation (MJO; Madden
and Julian 1994) as a component of the tropical vari-
ability has been widely recognized. The MJO activities

have been found to be intimately associated with onset
and active/break conditions of the Asian (Yasunari
1979; Lau and Chan 1986; Goswami 2005; Waliser
2006) and Australian (Hendon and Liebmann 1990;
Wheeler and McBride 2005) monsoons. The MJO sig-
nificantly modulates tropical cyclone genesis (Maloney
and Hartmann 2000; Mo 2000; Higgins and Shi 2001).
Moreover, the westerly wind burst associated with the
enhanced MJO phase over the western Pacific may act
as stochastic forcing in triggering El Niño–Southern Os-
cillation (ENSO; e.g., Moore and Kleeman 1999;
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McPhaden 1999; Kessler and Kleeman 2000). The di-
rect impacts of the MJO on the evolution of extratrop-
ics through the convective heating variability are also
evident (e.g., Weickmann 1983; Liebmann and Hart-
mann 1984). Ferranti et al. (1990) demonstrated that
the skill of European Centre for Medium-Range
Weather Forecasts in the extratropics is significantly
improved when the errors associated with the represen-
tation of the tropical intraseasonal oscillation are mini-
mized.

In addition to short-range weather prediction with
typical lead time of days, and seasonal-to-interannual
climate prediction with typical lead times of seasons,
recently there has been growing interest in subseasonal
forecasts with lead times on the order of weeks (e.g.,
Winkler et al. 2001; Schubert et al. 2002; Waliser et al.
2003a; Waliser 2005). In particular, the important role
of the MJO as a basis for developing and exploiting
subseasonal predictions has been highlighted (Schubert
et al. 2002). These growing interests in the subseasonal
forecast led to the recent development of an experi-
mental MJO prediction project (Waliser et al. 2006) as
well as other real-time efforts (e.g., Webster and Hoyos
2004; see also information online at http://www.icess.
ucsb.edu/asr/mjo_forecasts.htm, http://www.cdc.noaa.
gov/map/lim, http://www.bom.gov.au/bmrc/clfor/cfstaff/
matw/maproom/OLR_modes/index.htm, http://www.
bom.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM).

It is an intuitive notion that the predictability of a
phenomenon is proportional to its own period or life-
time (e.g., Van den Dool and Saha 1990), namely, ap-
proximately 50 days for the MJO. However, current
operational numerical weather prediction (NWP) mod-
els show rather limited predictive skill for the MJO,
with useful skill only up to lead times of about 7–10
days (e.g., Waliser et al. 1999; Hendon et al. 2000; Jones
et al. 2000; Waliser 2005; Seo et al. 2005). This limited
predictive skill for the MJO in current NWP models
mainly could be ascribed to the model deficiencies in
representing the deep convection of the MJO, rather
than the reaching of an intrinsic limit of predictability
of the MJO. Thus, in order to explore the theoretical
limit of predictability for the MJO, a natural avenue
adopted was the development of empirical models [see
Waliser (2005, 2006) for more complete discussion].

The first study based on the empirical model of the
MJO was conducted by Von Storch and Xu (1990).
They developed a scheme based on principal oscillation
pattern analysis of equatorial 200-hPa velocity potential
anomalies. Several years later, as an attempt to explore
the feasibility of employing such empirical models to
augment operational long-range forecasting proce-

dures, Waliser et al. (1999) assessed the predictive skills
of the empirical models based on a field-to-field singu-
lar value decomposition (SVD) of lagged maps of 30–
70-day filtered outgoing longwave radiation (OLR) and
upper-tropospheric zonal wind. Lo and Hendon (2000),
then, developed a forecast scheme by using the first
leading pair of empirical orthogonal functions (EOFs)
of OLR and three leading EOFs of 200-hPa stream-
function. Jones et al. (2004), on the other hand, used a
combined EOF analysis of 20–70-day bandpass-filtered
OLR, 850- and 200-hPa zonal winds, and multiple lag
regression to assess forecast skill over the bulk of the
tropics. The model utilizes the first five principal com-
ponents (PCs) from the combined EOF analysis and
the five most recent values of the PCs. With quite a
different approach, Mo (2001) used a combination of
singular spectral analysis and maximum entrophy meth-
ods for the monitoring and forecast of the OLR. Mean-
while, Wheeler and Weickmann (2001) conducted pre-
diction of convectively coupled tropical modes by em-
ploying filtering techniques based on tropical wave
theory.

The forecast skill of the MJO obtained by these em-
pirical approaches is generally on the order of 20–25
days of lead time for the dynamical fields and about 15
days for rainfall–OLR, surpassing performances by
most dynamical NWP models. While this result seems
rather encouraging for subseasonal forecasting, the
main hurdle of these approaches in the real-time appli-
cation is considered to be the extraction of the low-
frequency signals without the use of temporal filtering
as utilized in most of the aforementioned schemes. For
this purpose, Wheeler and Hendon (2004, hereinafter
WH04) developed an MJO index based on the first two
combined EOFs of equatorially averaged OLR and
zonal winds at 850 and 200 hPa, from which the annual
cycle and an estimate of the interannual variability have
been subtracted. Their method removes the necessity
to perform time filtering to identify the MJO, making it
feasible for the real-time MJO monitoring–forecast.
Based on this approach, Maharaj and Wheeler (2005)
predicted the time series of two leading PCs based on
an autoregressive model. While this approach has been
implemented in an operational forecast for the MJO at
the Australian Bureau of Meteorological Research
Center (BMRC), a comprehensive documentation of
predictive skills based on this approach is still missing.

In the present study, we attempt to report in detail
the predictive skills of an empirical forecast model for
the MJO based on WH04’s approach. Such work is
necessary in light of the following rationale: (a) to pro-
vide assessment of how well a statistical model might
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perform for the real-time forecast of the MJO; (b) to
quantify the potential predictability of the MJO for the
subseasonal forecast; (c) to provide a more realistic
benchmark by which to assess the predictive skill of
extended-range prediction from numerical forecast
models; and (d) to explore the feasibility of an experi-
mental study that augments a dynamical forecast model
via assimilation of an empirical forecast, as will be dis-
cussed in the summary section. The organization of this
paper is as follows. The datasets and methodology of a
combined EOF employed for this study are described
in section 2. In section 3, details of the empirical fore-
cast model and predictive skill will be described. Then,
sensitivity of the predictive skill to the number of lead-
ing PCs and number of the most recent values of the
PCs in the forecast model, as well as its dependence on
the MJO state in the initial condition, are illustrated in
section 4. In section 5, application of this empirical
model for the real-time forecast will be discussed. A
summary and discussion are provided in section 6.

2. Data and methodology

a. Datasets and initial analysis

Following WH04, we use the combined fields of
OLR and zonal wind at the 850- and 200-hPa levels to
construct an index of the MJO. The OLR data, a good
proxy for tropical convection (Waliser et al. 1993), were
processed by the National Oceanic and Atmospheric
Administration (NOAA; Liebmann and Smith 1996).
The zonal winds at 850 (u850) and 200 (u200) hPa are
based on the National Centers for Environmental Pre-
diction (NCEP)/Department of Energy (DOE) Global
Reanalysis-2 (Kanamitsu et al. 2002). Both the OLR
and wind data have horizontal resolution of 2.5° � 2.5°
and cover the global tropics (30°S–30°N) for the 1983–
2004 period. Additionally, for the purpose of removing
the interannual variability from the data, the monthly
mean NOAA Optimum Interpolation Sea Surface
Temperature, version 2 (OISST V2; Reynolds et al.
2002), with a horizontal resolution of 1° � 1° during
1983–2004, is also used to construct an index of ENSO.

Before conducting the combined EOF analysis, the
seasonal cycle (time mean and first three harmonics of
climatological annual cycle for the period of 1983–2004)
is removed from each grid point of OLR, u850, and
u200 fields. Then, the interannual variability (IAV) as-
sociated with ENSO is removed. The removal of the
IAV is necessary because time mean anomalies associ-
ated with the mature phase of El Niño–La Niña re-
semble the phase of the MJO when convection is cen-
tered near the date line–Maritime Continent (Lo and

Hendon 2000; WH04). The IAV of each variable is
obtained by the variability that is linearly related to an
ENSO index, where the latter is based on the time
series of the first rotated EOF of SSTs over the Indian
and Pacific sectors (50°S–60°N, 30°E–70°W).1 Monthly
regression parameters against the ENSO index for each
variable at each grid point are calculated and then in-
terpolated to daily values to form a 365-day seasonally
dependent regression relationship. At any given time,
the IAV component of each field can be derived based
on the observed ENSO index and regression parameter
at that particular day, and is subtracted from the value
at each grid point. Finally, a 120-day mean of the pre-
vious 120 days is subtracted to further remove any in-
formation of IAV, decadal variability, and trends
(WH04; also see http://www.bom.gov.au/bmrc/clfor/
cfstaff/matw/maproom/RMM for more details of these
procedures).

b. Combined EOF analysis

After the above procedures for the removal of cer-
tain low-frequency components, an EOF analysis
(Kutzbach 1967) is performed based on the correlation
matrix2 of the combined daily fields of equatorially av-
eraged (15°S–15°N) OLR, u850, and u200 over global
longitudes for 1983–2004. This combined EOF yields a
leading pair of PC time series that vary mostly on the
intraseasonal time scale. It serves as an effective filter
for the MJO without the need for time filtering, making
the PC time series an effective index for real-time MJO
monitoring/forecasting (WH04).

Figure 1 illustrates the leading pair of combined
EOFs (OLR, u200, and u850). Immediately evident are
the zonal wavenumber-1 and -2 structures of the MJO.
The first EOF pattern shows enhanced convection over
the eastern Indian Ocean–Maritime Continent, with
perturbation westerlies (easterlies) in the lower (upper)
troposphere on the western side of convection center;
while the second EOF displays enhanced convection
over the western Pacific with associated perturbation
winds. The first and second EOFs contribute to 11%
and 10% of the total combined variances, respectively,
and are well separated from other EOFs based on
North et al.’s (1982) formula (Fig. 2). It has been widely

1 The EOF analysis of SST is performed on a 4° � 4° grid. The
rotation of EOFs is based on the varimax algorithm constraint
(Richman 1986).

2 This differs slightly from WH04, who used the covariance ma-
trix applied to fields each normalized by the square root of their
zonally averaged temporal variance. Regardless of this difference,
the first two combined EOF patterns obtained here exhibit close
resemblances to those by WH04.
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documented that these two leading EOFs represent the
same propagating MJO mode at different phases. Thus,
PC time series of the two leading EOFs are used as the
MJO index, a subsample of which, for the period of
2003–04, is displayed in Figs. 3a,b. This MJO index has
also been shown to be advantageous for a measure of
interannual modulation of the MJO over that of some
previous studies (WH04). The combined amplitude of
the two PCs (Fig. 3c) is further used as the index of
MJO amplitude, and it will be used to determine am-
plitudes of the MJO at the initial forecast time when
performing real-time empirical forecasts of the MJO in
the following sections.

3. Empirical forecast model and validation

a. Multivariate lag-regression model

Based on PC time series obtained above, a linear
lag-regression model is constructed. Although in the
present study we will mainly demonstrate forecast re-
sults of OLR and zonal winds at 850 and 200 hPa, a
similar approach can be easily applied for the forecasts

of various variables and at multiple vertical levels. Note
that the predictand in the forecast model is also subject
to the removal of low-frequency components.

For predictand X at a particular grid point, the lag-
regression model can be written as

X�t0 � �� � �
k�1

N

�
j�1

M

Cj,kPCk�t0 � j � 1�, �1�

where t0 is the time at the forecast point and � is the
forecast lead. Here, N is the number of total PCs in-
cluded in this forecast model, M is the number of lagged
days used for the prediction, Cj,k is the lag-regression
parameter for particular PCk at the jth day earlier than
t0. Note that there is one forecast model for X at each
grid point and each lead time �.

Because two leading EOFs are capable of capturing
the essential features of the MJO as previously dis-
cussed, we mainly consider a baseline for the MJO fore-
cast by only including the first two leading PCs at the
most recent point in time, that is, N � 2, M � 1 in Eq.
(1). Then, the forecast model at a particular grid point
can be simplified as

X�t0 � �� � �1PC1�t0� � �2PC2�t0�, �2�

where 	1 and 	2 are the lag-regression parameters of
PC1 and PC2 at forecast time t0 against the predictand
X, which are obtained based on independent historical
observations. Note that seasonally varying lag-regres-
sion parameters are considered in this forecast model,
that is, the monthly based lag-regression coefficients
are calculated with the observed variable X and corre-
sponding PCs in that particular month. (The data points
for each regression are about 600 and slightly vary with
month and time lag.) Then, the monthly based regres-

FIG. 2. EOF spectrum of combined analysis of OLR, u850, and
u200 in terms of the total variance explained by each EOF mode.
Error bars are determined based on the formula by North et al.
(1982).

FIG. 1. Spatial structures of EOFs (top) 1 and (bottom) 2 of the
combined analysis of OLR, u850, and u200 (see the legend in
upper panel). Each field is normalized by the corresponding maxi-
mum of its absolute value along the global longitudes, which is
labeled above each curve. The variances explained by the EOFs 1
and 2 are 10.9% and 10.3%, respectively.
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sion coefficients are linearly interpolated to daily values
for 365 days of a year.

b. Model skills

In this section, the predictive skill of the forecast
model for OLR, u850, and u200 for the 1983–2004 pe-
riod is assessed. A cross-validation approach is adopted
in order to efficiently exploit the limited observations,
that is, when conducting the predictions for a particular
year, the observations during the 1983–2004 period ex-
cept that particular year are used to obtain the lag-
regression coefficients 	1 and 	2 in Eq. (2). Then, with
the observed PC time series in that year, prediction can
be conducted based on the forecast model.

Because the MJO has the maximum amplitude over
the tropical region, the forecast model is confined to the
global tropics (30°S–30°N). The prediction has been
performed at each grid point for each variable, includ-
ing OLR, u850, and u200, at every fifth day from the
beginning of each month for a 30-day-period daily fore-
cast. The statistics of predictive skill for the boreal sum-
mer season are calculated based on forecasts starting
from 1 June to 31 August, and those for boreal winter
are based on forecasts from 1 December to the end of
February.

Figure 4 illustrates model predictive skill for OLR
(solid lines) by providing pattern correlation coeffi-
cients between forecasts and observed EOF-filtered
OLR patterns as a function of forecast lead. The skill
obtained by persistence is also shown by dashed lines.
Because the combined EOF is based on equatorially
averaged fields, the 2D spatial pattern of EOF-filtered
OLR is defined based on the linear regression equation
of OLR against two leading PCs at lag 0, that is, Eq. (2)
with � � 0. Given the observed parameters of two lead-
ing PCs and their corresponding simultaneous regres-
sion coefficients, the OLR perturbation value can be
obtained at each grid point. The pattern correlations
shown in Fig. 4 are calculated over the global tropics
(30°S–30°N) at the original resolution of the datasets,
that is, 2.5° � 2.5° for both OLR and zonal wind fields
as displayed in the following figures.3 The predictive

3 Note that because of the original spatial resolution of T63
truncation in the NCEP–DOE Global Reanalysis 2 model, the
effective horizontal resolution of the reanalysis data on pressure
levels is about 5° in the zonal direction. Thus, pattern correlation
coefficients shown here could be slightly underestimated, since
roughly 4 times as many grid points than needed are used for the
calculation.

FIG. 3. The PC time series of combined EOF analysis: (a) PC1 and (b) PC2; (c) time series
of 
PC2

1 � PC2
2, which indicates the amplitude of the MJO for the period of 2003–04. Horizontal

lines in (c) are used to identify the strong (black) and weak (gray) MJO events.
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skill for boreal summer [June–August (JJA)] and win-
ter [December–February (DJF)] is displayed sepa-
rately. It is obvious that the forecast model exhibits
superior skill over the persistence for both winter and
summer predictions. Also clearly evident is that the
predictive skill for the MJOs during winter is generally
higher than that during summer, which is in accord with
the perception that MJOs are generally better orga-
nized and exhibit stronger amplitudes during boreal
winter. The pattern correlation coefficient for the win-
ter prediction is about 0.35 at 15-day forecast lead and
0.19 for the summer prediction. This lead of skill is
relatively lower than that obtained in previous studies,
for example, Waliser et al. (1999) and Jones et al.
(2004), which have illustrated correlation of about 0.6
at 15-day lead for winter MJOs. However, note again
that in these aforementioned studies, bandpass filtering
with an intraseasonal period has been applied before
constructing the empirical models, while such a tech-
nique has not been employed here for the purpose of
real-time application. Also, more predictors included in
the forecast models of these previous studies could also
be responsible for this difference (e.g., Jones et al.
2004). Nevertheless, it is worth mentioning that the pre-
dictive skill for the MJO will depend significantly on
spatial location as well as the MJO amplitude at the
forecast initial time. The predictive skill as shown in
Fig. 4 actually reflects an average level over the global
tropics with inclusion of many weak MJO events and
quiescent periods. As will be shown later, over some
particular locations, especially with strong MJO events
during the forecast period, the present statistical model

can still exhibit very encouraging predictive skill at a
long forecast lead time.

Figure 5 presents spatial patterns of temporal corre-
lation between forecast and EOF-filtered observations
of OLR at forecast leads from 5 to 20 days for both
boreal winter and summer seasons. For winter, the de-
crease of skill scores with forecast lead first appears
over the eastern equatorial Pacific and in the vicinity of
Gulf of Mexico and Caribbean Sea. As forecast lead
increases, areas with poor predictive skills expand to
the North and central Pacific. In contrast, relatively
high skill scores persist over a number of regions, in-
cluding the Maritime Continent, south-central Pacific,
and South America continent. In particular, a correla-
tion as high as 0.5 is exhibited to the north of Australia,
the central Pacific around 10°S, and over Brazil at the
lead of 15 days (Fig. 5c). At the lead of 20 days, corre-
lation scores greater than 0.3 are still evident over these
regions.

Consistent with the results shown by Fig. 4, the skill
scores for the boreal summer (Figs. 5e–h) at each fore-
cast lead are generally lower than the corresponding
winter predictions. Relatively higher skill scores during
summer are found over the South Asian monsoon re-
gion, including the Arabian Sea and Bay of Bengal, and
the Maritime Continent, as well as the northeastern
Pacific and South America, with scores of about 0.3 at
a lead of 15 days. Relatively low skill scores are ob-
served over the central Pacific and north of Australia.

Next, a stricter test of model predictive skill is per-
formed by illustrating pattern correlation coefficients
between predicted OLR, u850, and u200 against their
corresponding unfiltered daily anomalies. In this case,
the observed daily anomalies are only subject to the
removal of the annual cycle and interannual variations
associated with ENSO. Results are displayed in Fig. 6
for both winter and summer. Immediately noticeable is
that the model shows much higher predictive skill for
u200 than OLR and u850, which is particularly true
during boreal winter. Skill scores for u850 are compa-
rable to that for OLR during winter, while they are
slightly higher than the latter during summer. Because
observed unfiltered anomaly fields are used when cal-
culating the correlation, the skill scores shown in this
figure are generally lower than those shown in Fig. 4.

Then, similar to Fig. 5, the spatial distributions of
temporal correlation coefficients between predicted
OLR, u850, and u200 against their corresponding ob-
served unfiltered perturbation patterns for both winter
and summer are demonstrated in Figs. 7, 8, and 9, re-
spectively. Figure 7 shows the spatial correlation pat-
tern for OLR. The spatial distribution of high correla-
tion shown in this figure is largely similar to that by Fig.

FIG. 4. Pattern correlation of OLR over global tropics between
predicted and observed EOF-filtered OLR perturbation patterns
for boreal winter (solid line with circles) and summer (solid line
with triangles) predictions. The observed EOF-filtered OLR per-
turbation patterns are reconstructed based on the simultaneous
regression relationship between OLR and two leading PCs of
combined EOFs. Dashed lines denote the predictive skill ob-
tained by persistence for winter (circles) and summer (triangles)
predictions.
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5, although the magnitude is considerably lower here.
For instance, regions with relatively high skill scores for
the winter predictions are located over northern Aus-
tralia, equatorial Africa, the central South Pacific, and
Brazil, while for summer predictions, high predictive
skills are found over the Arabian Sea, where the cross-
equatorial Somali jet resides, the eastern equatorial In-
dian Ocean, and the Maritime Continent regions, as
well as Brazil. It is particularly noteworthy that al-
though unfiltered OLR patterns have been employed
for this figure, the model still exhibits encouraging skills
over north of Australia with correlation as high as 0.3
for the winter predictions.

Similarly, Fig. 8 shows a spatial correlation distribu-

tion of u850 at various forecast leads. For both seasons,
the regions with relatively higher scores are located
over elongated zones over the global tropics. While the
high skill score zone is largely located to south of the
equator during boreal winter, it shifts to north of the
equator with stronger amplitude over the Indian Ocean
and western Pacific sectors. Then, Fig. 9 displays the
correlation distribution pattern of u200. Much higher
correlation scores as compared to OLR and u850 can
be found over vast regions in the Eastern Hemisphere,
especially during boreal winter. At a forecast lead of 15
days, most regions of the equatorial Indian Ocean show
skill scores greater than 0.3. In particular, correlation
scores as high as 0.5 can even be detected over small

FIG. 5. Temporal correlation between forecasts and observed EOF-filtered OLR perturbations at various forecast leads from (top
to bottom) 5 to 20 days for boreal (left) winter and (right) summer.

FIG. 6. Pattern correlation between forecasts and observed unfiltered perturbation patterns of OLR,
u850, and u200 for both boreal (a) winter and (b) summer predictions.
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regions near the tip of the Indian Peninsula and In-
dochina during winter. During boreal summer (Fig. 9,
right panels), higher predictive skill for u200 is mainly
located over the South Indian Ocean off the Africa

coast, the Maritime Continent, and the Atlantic Ocean
to the east of Brazil (e.g., Fig. 9g).

To summarize, although the present empirical model
shows relatively lower predictive skills as compared

FIG. 7. As in Fig. 5, but for temporal correlation between forecasts and observed unfiltered OLR perturbations.

FIG. 8. As in Fig. 7, but for zonal wind at 850 hPa.
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with those by previous studies subject to bandpass fil-
tering of the intraseasonal time period, it still exhibits
very promising skill over some particular regions, even
based on the validation against unfiltered observed
fields. Note that this skill can be further dramatically
increased with knowledge of the state of the MJO at the
initial time of the forecast (e.g., Von Storch and Baum-
hefner 1991; Goswami and Xavier 2003; Waliser et al.
2003b; Fu et al. 2007), as will also be illustrated in the
following section.

4. Sensitivity tests

As previously noted, the main advantage of the cur-
rent forecast model is its potential feasibility for the
real-time application by avoiding a bandpass filtering to
extract the intraseasonal signals. In this section, we at-
tempt to explore the degrees of skill that could be
gained by employing a number of variations to the
model.

a. Impact of time filtering with an intraseasonal
period

For the purpose of clarity, we refer to the forecast
model described in the previous section based on the
most recent PC values of combined EOF of OLR, u850,
and u200 as the control experiment (Ctrl_exp). Then,
two additional experimental forecasts have been con-

ducted following a similar method adopted in the
Ctrl_exp, except that OLR, u850, and u200 fields are
further subject to time filtering to highlight the in-
traseasonal variability after the removal of seasonal
cycle and interannual variability associated with ENSO.
The filtered fields are then used for the combined EOF
analysis to get the two leading PCs, which consist of the
predictors in the forecast model, and are also used for
training the model to get the regression parameters. In
one experiment, a Lanczos time filtering is performed
by keeping the intraseasonal period of 20–70 days
(Exp_20_70d; Duchon 1979). This experiment mimics
the schemes used in many previous studies (e.g., Wa-
liser et al. 1999; Jones et al. 2004). In another experi-
ment, a low-pass time filtering with 20-day cutoff is
applied (Exp_20d_cutoff). This low-pass filtering to re-
move the higher-frequency noise in this experiment is
similar to some extent with the study by Lo and Hen-
don (2000), in which a T12 spatial truncation was ap-
plied to serve this purpose by assuming that the high-
frequency temporal and high-wavenumber spatial
variations tend to occur concomitantly.

Additionally, a third experimental forecast Exp_pen-
tad is conducted, which is the same as Ctrl_exp except
that 5-day (pentad) mean variables are used to con-
struct and train the empirical model instead of the daily
values used in Ctrl_exp. The application of pentad
means may also effectively remove high-frequency

FIG. 9. As in Fig. 7, but for zonal wind at 200 hPa.
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noise. However, it is noted that because application of
pentad means are involved, the forecast needs to be
started 2 days earlier for a real-time forecast.

The predictive skills from these three experiments
are illustrated in Fig. 10, which shows the pattern cor-
relations between predicted and EOF-filtered OLR
during boreal winter. While the application of low-pass
time filtering (Exp_20d_cutoff) is seen to improve the
skill modestly, the bandpass filtering (Exp_20_70d)
does bring a significant increase of predictive skill over
Ctrl_exp. The pattern correlation score is about 0.56 at

the forecast lead of 15 days by Exp_20_70d, which is
0.33 in Ctrl_exp, as previously mentioned. Moreover, a
correlation of greater than 0.3 can persist up to lead
times of 25 days in Exp_20_70d. This result is largely
consistent with those described in the aforementioned
previous studies. Moreover, it is found that the pentad
mean forecast (Exp_pentad) only exhibits a very lim-
ited increase of predictive skills over Ctrl_exp. Consid-
ering that a lead time of 2 days is lost due to application
of pentad mean calculations, the skill by this experi-
ment does not show much advantage over Ctrl_exp.

b. Inclusion of more PCs

In the control experiment, only two leading PCs of
the combined EOF are employed as predictors in con-
structing the forecast model. In this section, the depen-
dence of model predictive skill on the number of PCs is
explored. We have conducted a series of tests by in-
cluding up to five PCs at the most recent time in the
empirical model, that is, N � 2, 3, 4, 5 and M � 1 in
Eq. (1).

Figures 11a,b illustrate the predictive skill of OLR as
a function of forecast lead by considering various num-
bers of PCs in the model. (Note that the experiment
with two PCs is identical to that of Ctrl_exp.) Here, the
pattern correlation is calculated between the forecast
OLR fields against their corresponding observed un-
filtered perturbation patterns. The correlations at fore-

FIG. 11. Sensitivity test of predictive skills (pattern correlation) to the increase of PC numbers (from two to five PCs) as predictors
in the model [see Eq. (1)] for (a) winter and (b) summer, and temporal correlation of OLR at forecast lead of 20 days by considering
five leading PCs for (c) winter and (d) summer. The correlation in all plots is calculated based on model forecasts and observed
unfiltered OLR perturbations.

FIG. 10. Pattern correlation between forecasts and observed
EOF-filtered OLR perturbations based on several experimental
forecasts: Ctrl_exp, Exp_20_70d, Exp_20d_cutoff, and Exp_pentad.
See text for detailed descriptions of these experiments.
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cast lead 0 provide the variances of the observed per-
turbation fields explained by retained PCs. It is shown
that inclusion of more PCs beyond the leading pair only
slightly increases the explained variance of the total
field. Also, it is evident that inclusion of more PCs in
the forecast model only moderately increases predictive
skills for both boreal winter and summer forecasts. The
spatial pattern of temporal correlation coefficients be-
tween the predicted and observed unfiltered OLR at
the forecast lead of 20 days based on the model with
five PCs are displayed in Figs. 11c,d for both boreal
winter and summer cases. Compared to the correlation
distribution in Ctrl_exp (Figs. 7d,h), the skill gained for
OLR by inclusion of more PCs is mainly confined over
the central (eastern) equatorial Pacific during boreal
winter (summer). Further inspection suggests that lim-
ited improvement of predictive skills over these regions
is mainly brought about by including the third PC in the
forecast model (figure not shown). It is illustrated by
Kessler (2001) that the third EOF of OLR over the
tropics largely captures the eastward shift of MJO ac-
tivity to the east of the date line during El Niño events.
Thus, inclusion of the third PC in the forecast model
may enhance the predictive skills by capturing the MJO
activities over these regions.

c. Inclusion of additional lags of the PCs

In this section, we attempt to test whether additional
information on the state of the MJO earlier in time can
add to the skill of predicting the MJO similar to that by
Jones et al. (2004). In contrast with Ctrl_exp, in which
only the MJO state at the most recent point in time (t0)
is included, we have conducted additional fore-
casts in which parameters of two PCs at 5, 10, 15, and
up to 20 days prior to t0 in the forecast model are con-
sidered in addition to only those at t0, that is, N � 2
and M � 1, 2, 3, 4, and 5 pentad lags in Eq. (1).
(Here the forecast with one pentad lag is identical to
Ctrl_exp.) Predictive skills by these experiments for

boreal winter and summer are demonstrated in Fig. 12.
The results generally suggest that inclusion of more in-
formation of the two leading PCs in the past does not
bring much gain in predictive skill.

d. Sensitivity to MJO strength

It has been noted that predictive skills of such em-
pirical models could dramatically depend on the state
of MJO in the initial condition. Lo and Hendon (2000)
demonstrated that the empirical scheme readily beats
dynamical extended-range forecast model for lead
times greater than 6 days when the MJO is active in the
initial condition, while the empirical model exhibits
rather limited skills when the MJO is quiescent. Similar
findings are also discussed by other studies (e.g., Von
Storch and Baumhefner 1991; Goswami and Xavier
2003; cf. Jones et al. 2000; Waliser et al. 2003b).

Next, we conduct two experimental forecasts to illus-
trate the dependence of model forecast skill on the
MJO amplitude at the initial time. These forecasts are
similar to Ctrl_exp, except that they are only performed
with strong or weak MJO signals at the initial time.
Strong versus weak MJO conditions are determined
based on the combined amplitude of PC1 and PC2 (Fig.
3c), with the amplitudes of strong MJO events exceed-
ing 1.5 (black line) and weak MJO events less than 1
(gray line). Note that this information for the MJO
amplitude is available in real time.

Figure 13 shows the pattern correlations with fore-
cast leads based on forecasts of all cases (i.e., Ctrl_exp),
and cases with strong and weak MJO signals at the
initial forecast time, respectively, for both boreal winter
and summer seasons. The pattern correlation coeffi-
cients derived based on the predicted and observed un-
filtered OLR fields are displayed in Figs. 13a,b. It is
readily seen that predictive skills are dramatically in-
creased when there are strong MJO signals at the initial
condition. For instance, for both winter and summer

FIG. 12. Sensitivity test of predictive skills to the increase of lagged information of two
leading PCs (from one lag to five lags; unit of time lag is 5 days) for (a) winter and (b) summer.
Predictive skills are derived by pattern correlation between forecasts and observed unfiltered
OLR.
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predictions, the skill levels at a forecast lead of 15 days
by the predictions for the strong MJO events are nearly
comparable to that of a 5-day forecast in the control
experiments.

Significant improvement of the predictive skill for
the prediction with strong MJO signals at the initial
forecast time for both boreal winter and summer can

also be clearly evident in Fig. 14, which displays the
temporal correlation distribution of OLR, u850, and
u200 against the unfiltered fields at the forecast lead of
20 days. Compared to previous figures (e.g., Figs. 7d,h,
8d,h, 9d,h) the patterns are generally similar, however
the maxima of correlation coefficients for each variable
are markedly increased.

FIG. 14. Temporal correlation between forecasts and observed unfiltered perturbations of (a), (d) OLR; (b), (e) u850; and (c), (f) u200
at the forecast lead of 20 days for boreal (left) winter and (right) summer predictions based on forecasts with strong MJO signals at the
initial condition.

FIG. 13. Pattern correlation between forecasts and observed (top) unfiltered and (bottom)
EOF-filtered OLR perturbation patterns based on the predictions for all cases (squares; i.e.,
Ctrl_exp), and strong (circles) and weak (diamonds) MJO events for both boreal (left) winter
and (right) summer predictions. Strong and weak MJO events are defined by the combined
amplitude of PC1 and PC2 [see Fig. 3c for a subsample during the period of 2003–04, with
amplitude exceeding 1.5 for strong MJOs (black line) and less than 1 for weak MJOs (gray line).]
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Note that correlation scores shown in Figs. 13a,b also
contain information of model predictive skill for the
weather-scale systems. Because the present empirical
model is mainly designed for predicting the MJO, the
pattern correlations between the predicted and EOF-
filtered OLR fields are also illustrated in Figs. 13c,d.
For the real-time prediction, forecasts may only be per-
formed when there are strong MJO signals at the initial
forecast time. Thus, skill scores for the strong MJO
events as shown in Figs. 13c,d may provide particularly
valuable estimates of the baseline capability of this em-
pirical model in predicting the MJO. The results again
clearly illustrate that the predictive skill for the MJO
will increase dramatically if there are strong MJO sig-
nals at the initial forecast time, especially for the winter
predictions. A pattern correlation of about 0.5 is evi-
dent at the lead time of 15 days for the winter MJOs,
which is 0.33 for all-case predictions.

e. Advantage by considering seasonally dependent
regression parameters

As previously mentioned, seasonally dependent re-
gression parameters are considered in the present em-
pirical model, making it applicable for forecasts all
year-round. In this section, we will illustrate how extra
predictive skill can be gained by adopting seasonally
dependent regression coefficients. For this purpose, an
additional experiment has been conducted (Exp_
noseasn), which is similar to the control experiment,
except that the regression coefficients for the two lead-
ing PCs are calculated based on the all-year data and do
not vary with season.

Comparison of the skill scores by this experiment, as
measured by pattern correlation to unfiltered observa-
tional anomalies, to those by the control experiment
are illustrated in Fig. 15. It is evident that extra predic-
tive skill can indeed be gained by employing the sea-
sonally dependent regression parameters as in Ctrl_
exp, especially for summer predictions. Note that the
distribution of regression coefficients based on the all-
year data in Exp_noseasn is very close to the winter
pattern in Ctrl_exp, which mainly describes an east-
ward-propagating MJO component along the equator;
while in addition to this eastward-propagating compo-
nent, the summer regression pattern in Ctrl_exp also
describes observed meridional migrating signals over
the Asian monsoon region. Thus, these results indicate
that the extra predictive skill gained by employing sea-
sonally varying regression parameters could be through
a better description of the relationship between the PC
time series and predictand (e.g., distribution of regres-
sion coefficients).

5. Real-time forecast example

In this section, we briefly describe the approach used
to perform the real-time forecast based on the present
forecast model. First, the leading EOF patterns of com-
bined fields of OLR, u850, and u200 can be derived
based on long-period historical observations. Then,
once given the real-time observed OLR, u850, and
u200, the removal of the seasonal cycle for these fields
can be performed in real time, assuming the seasonal
cycle is stationary and can be defined using indepen-
dent data. Next, with the real-time observed daily SST
pattern, a real-time ENSO index can be obtained by
projecting this SST pattern onto the leading rotated
EOF of SST. The removal of the interannual variability
associated with ENSO in these daily fields can be sim-
ply accomplished by subtracting the anomalies pre-
dicted by the linear regression relation between these
daily fields and the leading PC of the rotated EOF of
SST. Then, the value of the previous 120-day mean for
each variable is further removed at each grid point.
After being subject to the removal of seasonal cycle and
interannual variations in the real-time daily observa-
tions, the parameters of PC1 and PC2 can be derived by
projecting combined fields of OLR, u850, and u200 to
the leading pair of combined EOFs. Once PC1 and PC2

are ready, a real-time forecast can be performed for
various variables at the multiple vertical levels based on
the lag-regression model, in which the lag-regression
coefficients have been determined based on historical
datasets. Actually, an operational forecast for the MJO
is being routinely conducted at the BMRC of Australia
based on this approach (see the aforementioned Web
site for details).

Last, we illustrate an example of a real-time “hind-

FIG. 15. Pattern correlation between forecasts and observed
unfiltered perturbation patterns of OLR based on control experi-
ments (solid lines) and experiments without adopting seasonal-
dependent regression coefficients (dashed lines) for winter
(circles) and summer (triangles) predictions.
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cast” for the OLR during the 2003/04 winter (from 1
November 2003 to �30 May 2004). In this case, the
regression parameters of PC1 and PC2 are derived
based on the observations from 1983–2002, while the
observed daily OLR, u850, and u200 as well as the daily
NOAA OISST pattern linearly interpolated from its
weekly values during the 2003/04 winter are employed
to make the real-time daily hindcasts. In Fig. 16a, the
eastward-propagating features associated the MJO dur-
ing the 2003/04 winter season are portrayed by the Hov-
möller diagram of observed EOF-filtered OLR (aver-
aged over 10°S–10°N). The predicted counterparts of
OLR at forecast leads of 5, 10, and 15 days are dis-
played by Figs. 16b–d, respectively. It is readily seen
that several major eastward-propagating MJO events
observed during this winter season are very well pre-
dicted, even in the forecast with a lead time of 15 days.
The pattern correlation coefficients for the OLR be-
tween the observations and forecasts at 5, 10, and 15
days during this period are 0.72, 0.48, and 0.31, respec-
tively. Nevertheless, the decaying amplitudes of pre-
dicted OLR with an increase of forecast lead are also
clearly discerned. Furthermore, Fig. 17 demonstrates a
particular forecast result by providing time evolution of
spatial patterns of OLR (shading) and u200 (contours)

based on the EOF-filtered observations (left panels)
and predictions (right panels) with the initial forecast
time of 1 February 2004. It clearly shows that the ob-
served essential features associated with this MJO
event in the OLR and u200 fields are well predicted by
the empirical model.

6. Summary

While the dynamical extended-range forecast models
generally exhibit rather limited predictive skills for the
MJO at the current stage, the empirical models display
much more superior performance and are able to pro-
vide useful predictions at a forecast lead of 2–3 weeks.
Empirical models, thus, become main avenues to ex-
plore the predictability of the MJO and to test the base-
line capability in forecasting the MJO in the dynamical
extended-range forecast models. On the other hand, it
is natural to expect that better representation of MJO
information produced by the empirical models may fur-
ther augment dynamical extended-range predictions. In
a current ongoing project, we attempt to explore the
feasibility of a “hybrid forecasts” methodology, by
which the predicted large-scale, slow-varying MJO cir-
culations generated by an empirical model are to be

FIG. 16. Hovmöller diagram of OLR (averaged over 10°S–10°N) during 2003/04 winter by the (a) observed EOF-filtered field and
forecasts at the lead time of (b) 5, (c) 10, and (d) 15 days (W m�2).
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assimilated into a dynamical model. If this activity re-
sults in showing an improvement in forecast skill of
either the large-scale circulation pattern and/or the
MJO-influenced synoptic features, it will not only pro-
vide a near-term means to improve extended-range
predictions but also unequivocally motivate the need to
improve intrinsic capability in regards to MJO simula-
tion–prediction in the dynamical models. Because de-
velopment of this project will need an empirical model
for predicting the MJO circulations, it becomes the
main motivation of the present study.

A multivariate lag-regression model is employed for
this purpose. As a first step to our ultimate goal, pre-
dictive skills of this empirical model have been compre-
hensively explored in the present study. The predictors
of this regression model include two principal compo-
nents of first leading pair of the combined EOF of
equatorially averaged OLR, u850, and u200 (WH04).
This combined EOF can serve as an effective filter for
the MJO without the need for bandpass filtering, which
has been employed by many previous studies, thus
making this scheme feasible for real-time applications.

Another advantage of this empirical scheme lies in the
consideration of the seasonal dependence of regression
parameters, making it applicable for the MJO forecasts
all year-round. Also note that although operational
forecasts for the MJO based on this scheme have been
routinely conducted at the BMRC of Australia, a sys-
tematic documentation of predictive skills by this ap-
proach is still missing, which is another motivation of
present study.

The analysis illustrates that the present empirical
model exhibits useful extended-range skill for the real-
time MJO predictions. Useful predictions with correla-
tion greater than 0.3 (0.5) between prediction and ob-
served unfiltered (EOF filtered) fields can be still de-
tected over some regions at the forecast lead of 15 days,
especially in the forecast for boreal winter MJOs. Fur-
thermore, a significant dependence of the predictive
skills on the initial condition of the MJO is demon-
strated. When there are strong MJO signals at the ini-
tial forecast time, the predictive skills would be greatly
improved. Correlation coefficients greater than 0.4 to
�0.5 between the predicted and observed unfiltered

FIG. 17. Time evolution of (left) observed EOF-filtered and (right) model-predicted OLR (shading; see the scale bar at bottom with
unit of watts per meter squared) and zonal wind at 200 hPa (contours with interval of 3 m s�1) with the initial forecast time (0 day) of
1 Feb 2004.
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variables can be discerned over vast regions at the fore-
cast lead of 20 days. The analysis also shows that pre-
dictive skills for the upper-tropospheric winds are rela-
tively higher than the low-level winds and convection
signals. Finally, the capability of this empirical model in
predicting the MJO is further demonstrated by a “hind-
cast” case study during the winter of 2003 to �2004.
The results show that the observed major eastward-
propagating MJO events during that winter are well
captured by the forecasts even at the forecast lead of 15
days, although decaying amplitudes in the predicted
fields with the increase of forecast lead are evident.
While the empirical model demonstrated in this study
provides an estimate of the predictability of the MJO
and benchmark for the dynamical extended-range mod-
els, it is still a relatively simple model. Improvements
should be considered in the future that might consider
multivariate and/or nonlinear approaches.
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