
A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 2 E2688

Article

Why Seasonal Prediction of California Winter 
Precipitation Is Challenging
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ABSTRACT: Despite an urgent demand for reliable seasonal prediction of precipitation in California 
(CA) due to the recent recurrent and severe drought conditions, our predictive skill for CA winter 
precipitation remains limited. October hindcasts by the coupled dynamical models typically show 
a correlation skill of about 0.3 for CA winter (November–March) precipitation. In this study, an 
attempt is made to understand the underlying processes that limit seasonal prediction skill for 
CA winter precipitation. It is found that only about 25% of interannual variability of CA winter 
precipitation can be attributed to influences by El Niño–Southern Oscillation (ENSO). Instead, the 
year-to-year CA winter precipitation variability is primarily due to circulation anomalies independent 
from ENSO, featuring a circulation center over the west coast United States as a portion of a short 
Rossby wave train pattern over the North Pacific. Analyses suggest that dynamical models show 
nearly no skill in predicting these ENSO-independent circulation anomalies, thus leading to limited 
predictive skill for CA winter precipitation. Low predictability of these ENSO-independent circula-
tion anomalies is further demonstrated by a large ensemble of atmospheric-only climate model 
simulations. While low predictability of the ENSO-independent circulation anomalies could be due 
to chaotic internal atmospheric processes over the mid- to high latitudes, possible underexploited 
predictability sources for CA precipitation in models are also discussed. This study pinpoints an 
urgent need for improved understanding of the formation mechanisms of ENSO-independent 
circulation anomalies over the U.S. West Coast for a breakthrough in seasonal prediction of CA 
winter precipitation.
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E xtreme climate variability poses a serious threat to California (CA), the nation’s most 
populous state and one that plays a crucial role in U.S. economy, including from 
agriculture and food supplies. Following a long-lasting statewide drought in CA during 

2012–16, severe dry and warm conditions reemerged in CA since 2019 and are still developing 
at the time of writing. The years 2020 and 2021 were marked as the fifth and second driest years 
in CA during the past 100 years, respectively, while January–
March 2022 were identified as the months with least rain and 
snow in CA.1 Due to significant risks posed by these multiyear 
droughts to local water supply and management, agriculture production, and wildfire severity 
and frequency, etc., a drought state of emergency has been declared in CA since 2021.

Considering the great challenges presented by these climate extremes, accurate prediction 
of CA precipitation several months ahead becomes particularly important for disaster prepa-
ration and mitigation as well as for drought and water restriction policy-making purposes 
(DeFlorio et al. 2021; Sengupta et al. 2022). Precipitation over CA largely occurs during its 
winter season with maxima over mountainous areas in the form of snowpack (Fig. 1a), often 
associated with landfalling atmospheric rivers (Dettinger 2011; Waliser and Guan 2017; 
Ralph et al. 2017). Due to its location over a transition region between two climate regimes 
that are associated with midlatitude storms and the subtropical high, CA winter precipita-
tion exhibits pronounced year-to-year variability (Fig. 1b). Previous studies have indicated 
considerable difficulty in skillfully predicting CA winter precipitation (e.g., Seager et al. 2015; 
Wang et al. 2017; Gibson et al. 2020a,b; Kumar and Chen 2020), with typical correlation skill 
of 0.1–0.4 for seasonal prediction of CA winter precipitation in our latest prediction systems 
(Gibson et al. 2021; Kumar and Chen 2020).

The anomalous sea surface temperature (SST) condition over the Pacific, e.g., El Niño, has 
been considered a primary predictor for seasonal prediction of CA precipitation, with wet (dry) 
conditions in CA during El Niño (La Niña) winters (Schonher and Nicholson 1989; Barnston 
and Smith 1996; Trenberth et al. 1998; L’Heureux et al. 2015; Jong et al. 2016; Seager et al. 
2010; Gibson et al. 2021). While a statistically significant correlation of about 0.5 between 
CA precipitation and the El Niño index during the past four 
decades is observed (Fig. 1b), it suggests that less than 25% of 
the year-to-year variability of CA precipitation can be explained 
by El Niño–Southern Oscillation (ENSO).2 This notion is largely 
in agreement with previous studies (e.g., Cash and Burls 2019; 
Kumar and Chen 2020). Therefore, tropical SST condition alone 
may not be sufficient for skillful or useful prediction of winter 
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2 This estimate is based on the Niño-1+2 index as 
shown in Fig. 1b, which exhibits a higher corre-
lation with CA winter precipitation than other El 
Niño indices, including the Niño-3.4 index and 
the ENSO longitude index (see supporting Fig. S1 
and to be further discussed in Fig. 3a).
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CA precipitation (e.g., Seager et al. 2015; Hoell et al. 2016; Cash and Burls 2019; Wang et al. 
2017; Kumar and Chen 2020). One good example is the failure in predicting CA precipitation 
during the period of 2012–16 drought (L’Heureux et al. 2021). Given the presence of a major 
El Niño event in 2015/16, increased winter precipitation over CA was highly anticipated to 
break the long-lasting drought, but the 2015/16 winter turned out to be another dry year in 
most areas of CA. In contrast, an unexpectedly significant amount of precipitation in CA 
occurred in the 2016/17 winter despite a weak La Niña condition. As shown in Fig. 1b, while 
several extreme wet winters over CA are linked to major El Niño events during the past four 
decades, e.g., 1982/83, and 1997/98 winters, El Niño (La Niña) conditions are not closely 
associated with other majority of extreme wet (dry) conditions over CA.

The somewhat limited predictive skill of CA precipitation based on ENSO is partially due 
to challenges in predicting the ENSO-induced teleconnection patterns (e.g., Bayr et al. 2019; 
Kumar and Chen 2020), but can also be attributed to other factors that contribute to the 
variability of CA precipitation, including internal variability of circulation anomalies in the 
midlatitudes (Baxter and Nigam 2015; Chen and Kumar 2018; Swenson et al. 2019; Kumar 
and Chen 2020; Gibson et al. 2021), SST anomalies and induced diabatic heating over the 
western Pacific, Indian Ocean, or extratropical North Pacific (Wang et al. 2014; Seager et al. 
2015; Hartmann 2015; Lee et al. 2015; Yang et al. 2018; Gibson et al. 2020b), or possibly 
Arctic sea ice variability (Cohen et al. 2017). While most of these previous studies in exploring 
predictors for CA precipitation were based on case studies, it remains elusive how predictable 
the year-to-year variability of CA winter precipitation is and why it is challenging to achieve 
skillful seasonal prediction of CA precipitation.

In this study, we analyze long-term hindcasts from multiple atmosphere–ocean coupled 
models participated in the North American Multimodel Ensemble (NMME) Project 
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b) Year-to-year variability of CA precipitation and the Nino12 index

Fig. 1. (a) Climatological winter (November–March) mean precipitation over California (shading; mm 
day−1), geopotential height (Z; gpm) and winds (see the vector scale on the upper right) at 500 hPa. 
(b) The year-to-year variability of CA winter precipitation anomalies (black) along with the Pacific 
Niño-1+2 index (blue; K). The Pearson correlation coefficient between these indices is also shown.
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(Kirtman et al. 2014; Becker et al. 2014, 2022), as well as simulations from a series of 
large-ensemble atmospheric-only global climate models (AGCMs), to address the following 
questions: What are the key anomalous circulation patterns affecting winter CA precipitation 
beyond the influences of ENSO? How predictable are the ENSO-independent circulation patterns 
associated with interannual CA precipitation? Answers to these questions will provide insights 
to inform future investigations toward improved prediction of CA winter precipitation.

Observational datasets
The observed monthly mean precipitation used in this study are obtained from two datas-
ets: the high resolution (0.5°) NOAA Climate Prediction Center (CPC) unified gauge-based 
precipitation dataset (Chen et al. 2008) is used to derive precipitation over the CA region 
(spatial average over total 183 0.5° grid points within the CA state), and the 1° precipitation 
data from the Global Precipitation Climatology Project (GPCP; version 2, revision 3; Adler 
et al. 2003) are used to derive global precipitation patterns associated with CA precipita-
tion. The observed El Niño indices (Niño-1+2 and Niño-3.4) were obtained from the NOAA 
Physical Science Laboratory website. The observed SST used for this study is from the Met 
Office Hadley Centre (Rayner et al. 2003). The latest ERA5 reanalysis from ECMWF (Hersbach 
et al. 2020) is used to characterize large-scale patterns associated with CA precipitation. All 
observational datasets analyzed in this study are from 1979 to 2019. The winter season is 
defined by November–March with anomalies for each winter calculated by departures from 
the 1979–2019 climatology.

Predictive skill of CA winter precipitation in NMME hindcasts
We first illustrate how well CA winter precipitation is predicted in the state-of-the-art dynami-
cal coupled models participated in the NMME Project (Kirtman et al. 2014; Becker et al. 2014). 
Predicted ensemble mean winter precipitation anomalies over CA from hindcasts issued on 
October 1 of each year by three NMME models (CESM1, GEOS5, and FLORB) are illustrated along 
with each member prediction and the observations in Fig. 2. Note that precipitation anomalies 
in model predictions are defined by departures from each model’s climatology. Consistent with 
previous discussions, all three NMME models show rather limited skill in predicting CA winter 
precipitation, with a Pearson correlation skill score of ~0.3 during the ~30-yr period based on 
ensemble mean predictions. Significant deviations among predictions from ensemble members 
are evident in all three models. Note that while the enhanced CA winter precipitation during 
1997/98 El Niño is more or less predicted in all these three models, enhanced CA precipitation 
during 1982/83 winter is only captured in CESM1 with a reduced amplitude. Low predictive skill 
of CA precipitation with correlation scores from 0.1 to 0.4 is also noted in other NMME models as 
reported in Kumar and Chen (2020), in which they also showed a large model spread in predicted 
CA precipitation associated with El Niño. The low prediction skill for CA precipitation in these 
NMME models could be due to model biases in predicting the evolution of global SST/sea ice 
anomalies after initialization, thus their remote influences on CA precipitation, or due to model 
inability in depicting other key processes associated with CA precipitation that cannot explained 
by SST/sea ice boundary forcing.

Circulation pattern associated with CA precipitation beyond ENSO influences
As previously discussed in Fig. 1, ENSO can only explain about 25% of the interannual 
variability of CA precipitation. In this section, to better understand predictability of CA 
precipitation, we will characterize anomalous circulation patterns associated with CA 
precipitation that are independent from ENSO.

The observed anomalous global precipitation and circulation at 500 hPa associated with 
enhanced CA winter precipitation are illustrated in Fig. 3a based on a regression analysis. 

Unauthenticated | Downloaded 12/07/22 05:40 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 2 E2692

Enhanced CA precipitation is accompanied with a relatively broad wet condition over the 
southwest United States and the neighboring Pacific Ocean along with a weak dry condition 
to the north along the Pacific coast. This north–south precipitation dipole pattern along west 
coast of North America (NA) is coupled with an anomalous low pressure system between 
the two anomalous precipitation centers. The enhanced precipitation over CA tends to be 
promoted by moisture transport and possibly enhanced atmospheric river activity due to 
strengthening of the westerly jet stream in the southern part of the anomalous Pacific low. 
In the tropics, enhanced precipitation is evident over the central and eastern Pacific while 
suppressed convection over the western Pacific and the southern Pacific convergence zone 
(SPCZ). These characters are reminiscent of the ENSO impacts on CA precipitation, which 
is confirmed by strong positive correlations between eastern Pacific SST anomalies and CA 
precipitation (purple contours in Fig. 3a). The maximum correlations are found over the far 
eastern Pacific over the coastal region off South America, i.e., the Niño1+2 region, in agree-
ment with results previously discussed in Fig. 1b (also see online supporting Fig. S1; https://
doi.org/10.1175/BAMS-D-21-0252.2). Therefore, in the following we will use the Niño-1+2 index 
to represent the ENSO variability instead of the Niño-3.4 index and the ENSO longitude index 
(ELI) (Williams and Patricola 2018).

Since the anomalous circulation patterns associated with CA precipitation in Fig. 3a can 
include both influences by ENSO and components that are independent from ENSO, we then 
attempt to extract ENSO-related Z500 and precipitation anomalies from the total anomalous 
fields. The ENSO-related Z500 and precipitation anomalies during a particular winter are 
defined by their respective linear regression patterns against the Niño-1+2 index and normalized 
by the amplitude of the Niño-1+2 index during that winter. The reconstructed ENSO-related 
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Fig. 2. The observed (black) and predicted CA winter precipitation anomalies (blue for ensemble 
mean predictions and gray for each member prediction; mm day−1) based on three NMME models: 
(a) CESM1, (b) GEOS5, and (c) FLORB. All these predictions are initialized on 1 October of each year.
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Z500 and precipitation for the 
period of 1979–2019 can then 
be similarly regressed onto CA 
precipitation to obtain the ENSO-
related Z500 and precipitation 
anomalies associated with CA 
precipitation variability (Fig. 3b); 
meanwhile, the anomalies that 
are independent from ENSO can 
be obtained by subtracting the 
ENSO-related components from 
the total (Fig. 3c).

By definition, the ENSO-related 
precipitation and circulation 
anomalies associated with CA 
precipitation are characterized 
by typical ENSO signals, with 
enhanced (suppressed) precipi-
tation over the central/eastern 
(western) equatorial Pacific, and 
a slightly shifted Pacific–NA 
teleconnection pattern over the 
midlatitudes (Fig. 3b). After re-
moval of the ENSO components, 
the Z500 anomalous pattern as-
sociated with CA precipitation is 
featured by a short Rossby wave 
train spanning over the North 
Pacific basin with a relatively 
small-scale low pressure system 
which more directly straddles the 
west coast of NA (Fig. 3c). Similar 
local circulation anomalies near 
the Pacific coast of NA associ-
ated with CA precipitation were 
also previously reported (e.g., 
Guirguis et al. 2020; Chen et al. 
2021). This ENSO-independent 
short Rossby wave train pattern 
over the North Pacific tends  
to  e x h ibit  wea k en ha nced  
(suppressed) precipitation over 
the western (central) equatorial Pacific (Fig. 3c). Similar anomalous circulation and tropical 
convection patterns as in Fig. 3c were also mentioned in previous studies in association 
with CA precipitation on subseasonal time scales (e.g., Teng and Branstator 2017; Gibson 
et al. 2020b). Particularly noteworthy is the dominance of the total CA precipitation in 
Fig. 3a by the ENSO-independent component (Fig. 3c), with a weak contribution from ENSO 
(Fig. 3b). Very similar results can be obtained if the ELI index is used to extract the ENSO 
signals (supporting Fig. S2), indicating that these results are robust to the particular choice 
of index used.

Fig. 3. Anomalous geopotential height at 500 hPa (Z500; 
contours; gpm) and precipitation (shaded; mm day−1)  
associated with CA winter precipitation: (a) total anomalies, 
(b) anomalies associated with the ENSO variability, and  
(c) anomalies with ENSO signals removed. Purple contours 
in (a) represent correlations of winter SST anomalies 
(only shown over 30°S–30°N) against CA precipitation 
(solid lines for positive correlations and dashed lines for 
negative correlations with the first contour for ±0.35 and an  
interval of 0.05). Stippled areas represent rainfall anomalies 
surpassing 95% significance level based on the Student’s 
t test of their corresponding correlation coefficients. All 
these results are based on observations. The observed 
ENSO-independent anomalous Z pattern over the red box 
region in (c) is used to define the Pacific_Z500ne index. 
See text for more details.
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Role of ENSO and ENSO-independent circulation anomalies for CA precipitation
To reveal underlying processes responsible for limited skill in predicting CA precipitation, we 
assess the relative role of ENSO-related and ENSO-independent circulation anomalies over 
the west coast of North America for CA precipitation prediction using a multilinear regres-
sion model. As previously discussed, the ENSO-related circulation pattern can be represented 
by the Niño-1+2 index based on the regression approach. We then define a Pacific_Z500ne 
index (with “ne” denoting the non-ENSO component) to depict circulation anomalies that 
are independent from ENSO. The observed Pacific_Z500ne index is derived by projecting 
anomalous winter mean Z500 pattern based on ERA5, after removal of the ENSO-related 
signals, onto the Z500 pattern over the Pacific coast of NA associated with CA precipitation 
(the red rectangular region in Fig. 3c).

We next examine how well CA winter precipitation can be “predicted” by assuming that 
both the winter Niño-1+2 and Pacific_Z500ne indices (i.e., both circulation anomalies over the 
west coast of NA that are induced by or independent from ENSO) can be perfectly predicted. 
The prediction model is constructed using the linear regression approach with the observed 
winter Niño-1+2 and Pacific_Z500ne indices as two predictors,

α β=  × +2 +  × 00ñ 1CA_Precip Ni o- Pacific _ Z5 ne,  (1)

where the two coefficients, α and β, are derived based on observations for the period of 
1979–2019 with cross validations in which factors during the year to be predicted are ex-
cluded when deriving the two regression coefficients. Additional experiments can also be 
conducted to examine how CA precipitation can be predicted by only using the Niño-1+2 or 
Pacific_Z500ne index.

As shown in Fig. 4, when only the observed winter Niño-1+2 index is used, the predicted 
CA precipitation shows a correlation of 0.56 with the observations (Fig. 4a), largely consistent 
with results previously discussed in Fig. 1b. Higher correlation skill (0.68) is obtained when 
the Pacific_Z500ne is used for prediction (Fig. 4b), which captures many drought events after 
1986 that are largely missed in prediction by the Niño-1+2 index. When both the Niño-1+2 
and Pacific_Z500ne indices are used, prediction is significantly improved with a correlation 
skill of about 0.83 (Fig. 4c). This result suggests that if we could eventually accurately predict 
the winter El Niño condition and the Pacific_Z500ne index, we would have a much improved 
chance at skillfully predicting CA precipitation, with these combined indices explaining ~70% 
of the precipitation variability. For practical seasonal prediction of CA precipitation, the key 
question then concerns the predictability of the winter Niño-1+2 and Pacific_Z500ne indices 
several months ahead, which will be examined in the following by analyzing hindcasts from 
the NMME models.

Limiting factors for CA precipitation predictability
Figure 5 presents predicted time series of the winter Niño-1+2 and Pacific_Z500ne indices 
based on CESM1, showing both ensemble mean prediction (blue) and prediction from in-
dividual members (gray). It is clearly seen that the winter Niño-1+2 index can be very well 
predicted with a skill of 0.78 between the ensemble mean prediction and observations, and 
with great consistency among individual members (Fig. 5a). Generally skillful prediction of 
winter El Niño condition by NMME models when initialized in fall has also been reported 
(Zhang et al. 2017; L’Heureux et al. 2020; Kumar and Chen 2020). However, the ensemble 
mean prediction of the Pacific_Z500ne index in CESM1 shows nearly no correlation with the 
observations with a significant spread among individual member predictions (Fig. 5b). Based 
on discussions for Fig. 4, the rather limited skill in predicting CA precipitation is therefore 
primarily due to the lack of predictive skill for the Pacific_Z500ne index. In another words, 
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seasonal prediction skill for CA winter precipitation is mainly relying on ENSO signals. This 
is further confirmed by the predicted CA precipitation based on the regression model used 
for Fig. 4c, but replacing the observed winter Niño-1+2 and Pacific_Z500ne indices with 
the CESM1 predictions (supporting Fig. S3). For example, predictions by using both CESM1 
predicted winter Niño-1+2 and Pacific_Z500ne indices in the regression model shows a cor-
relation of 0.34 with the observations, close to the skill directly based on CESM1 (Fig. 2a). 
When the CESM1 predicted Niño-1+2 index along with the observed Pacific_Z500ne index 
are used, the skill score is significantly increased to 0.71. Very similar results on predictive 
skill of the Niño-1+2 and Pacific_Z500ne indices are also found in other NMME models (see 
supporting Fig. S4 for GEOS5).

The limited skill for the Pacific_Z500ne index in NMME models could be due to the lack of 
predictability of the ENSO-independent circulation anomalies as a result of strong internal 
atmospheric variability in the midlatitudes (e.g., Baxter and Nigam 2015; Kumar and Chen 
2020), but also could be due to coupled model deficiencies in SST and associated convection 
anomalies beyond ENSO and/or Arctic sea ice variability that have been suggested to have 
some influence on circulation patterns over the west coast NA (e.g., Wang et al. 2014; Palmer 
2014; Lee et al. 2015; Hartmann 2015; Cohen et al. 2017; Guan et al. 2021). To shed light 
on this, predictability of the Pacific_Z500ne index is further examined by analyzing a large 
ensemble of Atmospheric Model Intercomparison Project (AMIP)-type climate simulations 
which participated in the NOAA Facility for Climate Assessments (FACTS; Murray et al. 2020). 
In total, 84 AGCM members from seven FACTS models (12 members from each model; see 
supporting Table S1 for details) are analyzed. All these individual members of AGCM simula-
tions are forced by the same observed monthly mean SST and sea ice, which makes it possible 
to effectively extract the forced Pacific_Z500ne variability in response to the observed SST 
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Fig. 4. Predicted CA winter precipitation (blue; mm day−1) based on a linear regression approach 
using the observed winter (a) Niño-1+2, (b) Pacific_Z500ne, and (c) both Niño-1+2 and Pacific_
Z500ne indices, along with the observations (black).
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and sea ice based on the ensemble mean of simulations, in which the internal variability is 
significantly averaged out. Similarly, the Pacific_Z500ne index in AGCM simulations can also 
be derived by projecting simulated winter mean Z500 anomalies, 
after removal of the ENSO component using the regression 
approach,3 onto the observed ENSO-independent Z500 anomalies 
associated with CA precipitation (the red box in Fig. 3c).

As illustrated in Fig. 6, the 84-member averaged Pacific_Z500ne index based on FACTS 
model simulations only shows a moderate correlation (~0.41) with the observations, 
suggesting that less than 20% of the observed Pacific_Z500ne can be attributed to the observed 
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ensemble mean and gray for each individual member) of (a) winter Niño-1+2 and (b) Pacific_Z500ne 
indices based on CESM1 hindcasts initialized on 1 Oct.

3 The Z500 anomalies associated with ENSO is 
calculated independently in each model by re-
gressions onto the observed Niño-1+2 index.

Fig. 6. The Pacific_Z500ne index simulated by 84 AGCMs participated in the NOAA FACTS Proj-
ect (the blue line for multimember ensemble mean, and gray by individual member simulations) 
along with the observations (black).
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SST and sea ice variability given the atmospheric responses to SST/sea ice are perfectly 
represented. The low predictability in Pacific_Z500ne by SST and sea ice is further indicated by 
the weak amplitude of the ensemble mean Pacific_Z500ne while 
large spread among simulations from individual members.4 This 
result suggests that the internal atmospheric variability can 
play a significant role in modulating the circulation anomalies 
over the west coast NA, which may explain poor prediction skill 
of the Pacific_Z500ne index in NMME models, although there is also possibility that some 
predictability sources for the Pacific_Z500ne may not be fully represented in these models 
due to model deficiencies. This will be further discussed.

Summary and discussion
Due to frequent occurrence of persistent and/or severe droughts over CA in the recent decade, 
there is an urgent demand for skillful seasonal prediction of CA winter precipitation for water-
related disaster preparation and water management purposes. Despite the consensus that 
large-scale conditions, such as ENSO, exert significant influences on the year-to-year variability 
of CA precipitation, our predictive skill for winter mean CA precipitation remains rather limited 
based on both statistical and dynamical approaches. For example, when initialized in October, 
the state-of-the-art dynamical coupled NMME models generally only show a correlation skill 
of about 0.3 for CA winter prediction (see Fig. 2). In this study, we attempt to understand the 
key limiting factors underlying low predictive skill of CA precipitation, by focusing on predict-
ability of the anomalous circulation pattern associated with the year-to-year variability of CA 
precipitation beyond the influences of the ENSO.

It is shown that only about 25% of interannual variability of CA winter precipitation can be 
attributed to the remote influences by tropical Pacific SST variability associated with El Niño/La 
Niña conditions (Fig. 1). Instead, the year-to-year CA winter precipitation variability is primarily 
due to circulation anomalies that are independent from ENSO, characterized by a circulation 
center over the west coast United States as a part of a short Rossby wave train spanning over 
the extratropical North Pacific (Fig. 3). Tests based on a multilinear regression model show that 
CA precipitation variability can be well predicted provided perfect predictions of the winter El 
Niño condition and the ENSO-independent circulation anomalies over the west coast United 
States (Fig. 4). Hindcasts based on the NMME models, however, suggest that while the winter 
El Niño condition can be skillfully predicted in October, these dynamical models show nearly 
no skill in predicting the ENSO-independent circulation anomalies (Fig. 5), leading to poor 
predictive skill for CA winter precipitation. Low predictability of these circulation anomalies 
that are independent from the ENSO variability is further demonstrated by a large number of 
AMIP-type AGCM simulations forced by the observed global SST and sea ice (see Fig. 6). These 
results suggest that less than 20% of the ENSO-independent circulation anomalies associated 
with CA precipitation can be explained by global SST and sea ice variability.

This study indicates that significantly improved prediction of the circulation anomalies 
over the west coast United States that are independent from the ENSO will be critical for any 
major breakthrough in predicting CA precipitation. As previously discussed, while difficulty in 
predicting these ENSO-independent circulation anomalies could be due to chaotic atmospheric 
internal processes, chances may still exist for improvement of CA precipitation prediction with 
possible missing predictability sources in the NMME forecast models and FACTS AGCMs. For 
example, as shown in Fig. 3c, while the ENSO-independent circulation anomalies associated 
with CA precipitation is closely linked to a wave train of short Rossby waves over the North 
Pacific, the formation mechanism of this wave train remains largely elusive. Noteworthy is 
that a similar short Rossby wave train over the North Pacific has also been observed associ-
ated with CA precipitation on the intraseasonal time scales, which tends to be further linked 

4 Amplitude of the ensemble mean Pacific_Z500ne 
and their correlations to the observations vary in 
individual models (see supporting Fig. S5).
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to intraseasonal convective activity over the western Pacific and Indian Ocean (Teng and 
Branstator 2017; Siler et al. 2017; Gibson et al. 2020b, 2021). Therefore, there could exist an 
upscale influences on winter mean circulation anomalies associated with CA precipitation 
from the tropical intraseasonal variability (e.g., Peings et al. 2022). However, it has been well 
recognized that our current climate models have great difficulties in representing the tropi-
cal intraseasonal variability and its teleconnection to the middle to high latitudes (e.g., Stan 
et al. 2017; Jiang et al. 2020; Stan et al. 2022). Moreover, accurate depiction of the coupling 
processes between the troposphere and stratosphere, which plays crucial roles in regulating 
both tropical convective variability [e.g., the quasi-biennial oscillation (QBO)] and Arctic sea 
ice–induced mid- to high-latitude circulation anomalies, can represent another great chal-
lenge for present-day climate models (Kidston et al. 2015; Jiang et al. 2020; Kim et al. 2020), 
including the NMME and FACTS models analyzed in this study, due to their relatively coarse 
resolutions and low-top configurations. Future investigations on the formation mechanisms 
of the ENSO-independent circulation patterns associated with CA precipitation based on im-
proved observations and modeling systems (e.g., the high-top global cloud permitting model) 
should lead to further important insights into improved understanding and prediction of CA 
precipitation variability.

Some caveats of this study need to be mentioned. For example, extraction of ENSO-related 
circulation anomalies associated with CA precipitation is based on a linear regression onto the 
Niño-1+2 index, which may have some limitations related to nonlinearity in the response to 
different phases of ENSO. Therefore, the ENSO-independent anomalies derived in this study 
could also contain signals associated with ENSO-related nonlinear processes, e.g., ENSO in-
teraction with other climate variability modes. Moreover, while this study is mainly based on 
the period of 1979–2019, circulation patterns associated with the year-to-year variability of  
CA winter precipitation can also be modulated by lower-frequency climate variability modes 
(e.g., the Pacific decadal oscillation), the long-term climate trend, and local human activities 
(e.g., Yoon et al. 2015; Swain et al. 2016; Mamalakis et al. 2018; Williams et al. 2018; Swain 
et al. 2018; Fasullo et al. 2018; Gibson et al. 2020b). Furthermore while sensitivity testing was 
carried out for difference indices, the full diversity of El Niño events are difficult to capture in 
any single index (e.g., Paek et al. 2017; Patricola et al. 2020; Kumar and Chen 2020). Consider-
ing the need for management of water storage in a drought prone region, further investigation 
on precipitation predictability over various basins in California is also warranted.
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