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ABSTRACT: The leading interannual mode of winter surface air temperature over the North American (NA) sector,

characterized by a ‘‘warm Arctic, cold continents’’ (WACC) pattern, exerts pronounced influences on NA weather and

climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus

internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined

analysis of observations and large-ensemble atmospheric global climatemodel simulations. Internal atmospheric variability

is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total

variance. An anomalous SST pattern resembling the North Pacific mode is identified as a major surface boundary forcing

pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability

over the Chukchi and Bering Seas. Findings from this study not only lead to improved understanding of underlying physics

regulating the interannualWACC variability, but also provide important guidance for improvedmodeling and prediction of

regional climate variability over NA and the Arctic region.
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1. Introduction

In contrast to the pronounced warming and rapid sea ice loss

over the Arctic in recent decades, frequent occurrence of cold

harsh winters has been observed over Eurasia and central

North America (NA), jointly featuring a ‘‘warm Arctic, cold

continents’’ (WACC) pattern (e.g., Overland et al. 2011; Cohen

et al. 2014; Kug et al. 2015; Sun et al. 2016). AWACCpattern has

also been identified as a prevailing interannual variabilitymode in

surface air temperature (SAT) anomalies during boreal winter

over the mid- to high latitudes of Eurasia and NA (Kug et al.

2015; Blackport et al. 2019; Mori et al. 2019a; Guan et al. 2020a;

see Fig. 1a for an example of the WACC pattern over the NA

sector). These cold extreme weather events over midlatitude

continents and Arctic warm episodes are linked together via

recurrent atmospheric anticyclonic circulation anomalies, and

are sustained by the circulation-induced temperature and mois-

ture advection and associated anomalous surface radiative and

turbulent heat fluxes (e.g., Lee 2012; Sorokina et al. 2016; Park

et al. 2015; Blackport et al. 2019). The origin of the anticyclonic

circulation anomalies, which is the key to understanding the

underlying physics in driving the interannual WACC pattern,

however, remains unclear.

With a main focus on the interannual time scale, many studies

have suggested that sea ice loss over theBarents–Kara Seas (BKS)

and Chukchi–Bering Seas (CBS), respectively, associated with

Arctic warm SAT anomalies, is crucial in exciting the anoma-

lous anticyclonic circulation over the Eurasian and NA sectors

via tropospheric or stratospheric planetary waves, and thus the

WACC pattern, leading to enhanced Arctic warming (Inoue et al.

2012; Tang et al. 2013; Kug et al. 2015; Peings and Magnusdottir

2014; Semenov and Latif 2015; Orsolini et al. 2012; Nakamura

et al. 2016; Xue et al. 2017; Zhang et al. 2018). Therefore, this

represents a positive feedback in sustaining the WACC pattern.

However, climate models exhibit diverse responses in midlatitude

SAT anomalies to Arctic sea ice loss (e.g., Cohen et al. 2020).

While most previous modeling studies focused on the Eurasian

sector, cooling anomalies over midlatitude continents as a re-

sponse toBKS sea ice loss on the interannual time scale are able to

be simulated in several model simulations; the amplitudes of the

cooling anomalies are generally much weaker than their observed

counterparts (e.g., Mori et al. 2014; Kim et al. 2014; Mori et al.

2019a;Blackport et al. 2019). In contrast, close association between

observed interannual BKS sea ice and midlatitude continental

cooling anomalies overEurasia could not be represented in several

other modeling studies (e.g., Sun et al. 2016; Chen et al. 2016;

McCusker et al. 2016;Ogawa et al. 2018). Rather limitedmodeling

studies have been conducted to explore potential impacts of CBS

sea ice on temperature anomalies over the NA continent.

On the other hand, previous studies indicated a possible role

of tropical sea surface temperatures (SSTs) in driving the in-

terannual WACC pattern. La Niña–like SST anomalies over
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the tropical eastern Pacific (TEP) could induce a WACC-like

pattern over the NA sector through Rossby wave trains across

the North Pacific (NP; Clark and Lee 2019), and also possibly

lead to cold winters over Eurasia via an indirect impact on

tropical Atlantic SST and associated teleconnection patterns

(Matsumura and Kosaka 2019). Pacific SST anomalies have

also been proposed to play a role for the unexpected cold

winters over central NA and accompanying drought over

California during the winters of 2012–15 (e.g., Palmer 2014;

Hartmann 2015; Seager et al. 2015; Lee et al. 2015; Wang et al.

2014; Watson et al. 2016), although there exists a debate on the

relative importance of SST anomalies over the tropical Pacific

versus extratropics over the NP (e.g., Hartmann 2015; Baxter

and Nigam 2015; Teng and Branstator 2017).

In addition to these above remote or local boundary forcing

by Arctic sea ice and SST anomalies, there is increasing evi-

dence that the anomalous anticyclonic circulation that drives

the interannualWACC pattern can also be ascribed to internal

atmospheric variability (e.g., Sorokina et al. 2016; Gong and

Luo 2017;Mori et al. 2019a; Blackport et al. 2019; Sigmond and

Fyfe 2016; Sun et al. 2016; McCusker et al. 2016; Ogawa 2018).

The internal variability of atmospheric circulation over the

mid- to high latitudes of Eurasia and NA continents is often

manifested by the vigorous subseasonal variability. For example, a

similar WACC pattern in SAT anomalies has been recently re-

ported as a leading subseasonal SAT variability mode to link

Arctic sea ice changes andwinter SATanomalies overmidlatitude

continents (e.g., Lin 2018;Guan et al. 2020b), representing a cross-

scale influence on the interannual WACC variability (Sorokina

et al. 2016; Guan et al. 2020a).

Considering the complex interplay of surface boundary

forcing, including SST and sea ice, and internal atmospheric

variability in possibly contributing to the formation of the

WACC pattern, as well as the interactive feedback among

land, ocean, and atmosphere, identification of the key pro-

cesses responsible for the observed WACC variability remains

challenging. Large-ensemble atmospheric-only global climate

model (AGCM) simulations, forced by the observed SST and

sea ice, can provide a useful tool to assess the relative contri-

butions of boundary forcing versus atmospheric internal vari-

ability in generating theWACC pattern, although atmospheric

influences on SST and sea ice variability are not resolved in

these AGCM simulations. For example, by analyzing large-

ensemble multimodel simulations, Mori et al. (2019a) found

that in addition to internal atmospheric processes, BKS sea ice

variability plays an important role in contributing to the in-

terannual variability and long-term trend of the winter WACC

pattern over the Eurasian sector, while the role of the SST

anomalies is largely negligible.

As the interannual WACC variabilities over the Eurasian

and NA sectors are not necessarily related to each other (e.g.,

Kug et al. 2015), and also considering that insufficient attention

has been given to understanding the causes of the WACC

variability over the NA sector, in this study we have conducted

FIG. 1. Winter SAT (shading; scaled by the color bar) and PS (contours; dashed when negative; interval: 0.5 hPa)

anomalies in (a) observations and (b) AGCMs associated with the leading SVD mode of winter SAT anomalies

between observations and simulations over 208–908N, 1208E–608W,which are derived by regressing their anomalies

onto the respective normalized expansion coefficients, i.e., ECOBS and ECAGCM. Regressions based on simulations

are calculated using the total 96 members of multimodel simulations, i.e., with a total combined time series of 3360

winters. The green lines, with the two end points of 358N, 1008E and 908N, 3208W, represent the axis linking the two

SATanomalous centers of theWACCpattern used for the cross sections shown in Fig. 3. Areas with stippled purple

dots indicate the shaded anomalies surpassing the 95% significance level.
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an analysis to quantitatively characterize the relative impor-

tance of surface boundary forcing versus internal atmospheric

processes in regulating the interannual WACC variability over

the NA sector. The outcome of this study is expected to im-

prove our understanding andmodeling/prediction capability of

the NA regional climate variability on the interannual time

scales. Hereafter, the NA sector is referred to an extended

region including eastern Siberia, the NA continent, and the

neighboring NP and Arctic regions. The remainder of this

paper is organized as follows. Section 2 introduces the obser-

vation and multimodel datasets used in this study, and the

approach to extract the leading interannual WACCmode over

the NA sector by employing a combined analysis of observa-

tions and AGCM simulations following Mori et al. (2019a).

Section 3 presents main results on quantitative characteriza-

tion of critical processes responsible for the interannual

WACC variability over the NA sector based on both obser-

vations and multimodel simulations. A summary and brief

discussion are given in section 4.

2. Data and method

a. Observation and model datasets

Monthly observational data used in this study include SAT,

surface pressure (PS), 3D geopotential height (Z), zonal and

meridional winds (u, y), and temperature (T) from ERA-

Interim (Dee et al. 2011), and sea ice concentration (SIC) and

SST from the Met Office Hadley Centre (Rayner et al. 2003)

for the period of 1979–2013.

The same monthly variables except SIC and SST from climate

model simulations based on AGCMs participated in the NOAA

Facility for ClimateAssessments (FACTS;Murray et al. 2020) are

also analyzed in this study. These large-ensemble Atmospheric

Model Intercomparison Project (AMIP; Gates et al. 1999)-type

AGCM simulations are particularly useful for assessment of

predictable signal and comparing that to the climate system’s

internal variability (Sun et al. 2016, 2018; Mori et al. 2019a;

Murray et al. 2020). Analyses in this study mainly focus on

simulations from the amip_obs_rf experiment from FACTS, in

which the eight AGCMs are forced by the observed monthly

mean boundary layer conditions including SST and sea ice, and

historical changes in natural and anthropogenic radiative forcing

and aerosol emissions (see Tables 1 and 2 for details of FACTS

experiments and models). Available simulations from three of

the eight AGCMs participated in the amip_clim_polar and

eof1_sst experiments are also analyzed. While the observed

historical radiative forcing specified in the latter two experi-

ments is the same as in the amip_obs_rf, climatological sea ice

along with climatological SST over the grids where climatolog-

ical sea ice is present are specified in the amip_clim_polar ex-

periment to isolate the role of extrapolar SST variability for

model atmospheric variability; in contrast, SST anomalies of the

leading empirical orthogonal function (EOF) mode of the ob-

served monthly mean SST variability (refer to Fig. 9a), which

largely represents SST variability associated with the El Niño,
are used as the boundary forcing in the experiment eof1_sst

along with the observed monthly sea ice (see Table 1 for more

details). If not specially mentioned, model results in the fol-

lowing discussions are based on the amip_obs_rf experiment.

TABLE 1. Descriptions of the AGCM experiments in the NOAA FACTS. See the FACTS project website for more details: https://

www.psl.noaa.gov/repository/a/factsdocs.

Expt name Description

Forcings

SST Sea ice

Greenhouse

gases and ozone

amip_obs_rf AMIP with observed radiative forcing Obs Obs Obs

amip_clim_polar AMIP with observed radiative forcing,

climatological sea ice, and polar SST

Obs/present

climatology

Present

climatology

Obs

eof1_sst The first leading EOF mode of global SST

variability with observed radiative forcing

First EOF Obs Obs

TABLE 2. Description of FACTS AGCMs analyzed in this study. Note that while simulations from all the eight AGCMs are available

from the amip_obs_rf experiment, only the three AGCMs marked with an asterisk (*) are available for both the amip_clim_polar and

eof1_sst experiments.

Model name Institute

Ensemble

size

Horizontal resolution

(lon 3 lat)

AM3 Geophysical Fluid Dynamics Laboratory (GFDL) 17 1.98 3 1.98
CAM4* National Center for Atmospheric Research (NCAR) 20 18 3 18
ECHAM5* Max Planck Institute for Meteorology (MPI) 50 0.758 3 0.758
ESRL-CAM5 National Center for Atmospheric Research (NCAR) 40 18 3 18
ESRL-CAM5L46 National Center for Atmospheric Research (NCAR) 16 18 3 18
ESRL-GFSv2* NOAA/NWS Environmental Modeling Center (EMC) 50 18 3 18
GEOS-5 NASA Goddard Space Flight Center (GSFC) 12 1.258 3 18
LBNL-CAM5 National Center for Atmospheric Research (NCAR) 50 18 3 18
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Both the reanalysis and model data are interpolated onto

common 2.58 3 2.58 grids. To focus on the interannual WACC

variability, winter mean (November–March)1 anomalies of

various fields from both observations and simulations were

derived by removing climatological mean and linear trends.

Climatology of these variables is separately derived for ob-

servations and each ensemble simulation from the eight

AGCMs by averaging over the 35 winters from 1979 to 2013.

b. Analysis methods

Considering the model deficiencies in representing the

WACC pattern over the NA sector (to be discussed more

later), a combined analysis method using both observations

and multimodel large-ensemble simulations (e.g., Benestad

et al. 2017; Mori et al. 2019a) is adopted to extract a leading

interannual WACC pattern in model simulations similar to the

observed counterpart. As in Mori et al. (2019a), the leading

interannual SAT variability mode in observations and model

simulations over the NA sector is derived by a singular value

decomposition (SVD) analysis of the combined winter SAT

anomalies from observation and simulations. In the SVD

analysis, the spatial structures of the observed and simulated

leading modes of winter SAT anomalies are determined in

such a way that the modes explain the maximum squared

temporal covariance between observations and simulations

over the analysis domain (e.g., Bretherton et al. 1992). In the

FACTS experiment amip_obs_rf, as the boundary and radia-

tive forcing specified in each member of the AGCM simula-

tions is exactly the same following the observed historical SST

and sea ice anomalies, this SVD analysis method is expected to

derive a leading interannual SAT mode over the NA sector in

model simulations as close as possible to the observed leading

SAT pattern.

The SVD analysis is conducted based on the covariance

matrix of the combined observed and simulated winter SAT

anomalies over the domain 208–908N, 1208E–608W (;2117

spatial points). Considering a minimum ensemble size of 12

available in all the eight AGCMs, only 12 members from each

model are used for the SVD analysis (i.e., a total of 96 mem-

bers), although the remaining members will also be included

for other analyses to make full use of large model ensembles.

The SVD analysis is performed between one set of 35-winter

model anomalous SAT data with all 96 members combined

together and another set of the observed SAT data, which

duplicates the observed 35-winter record 96 times to match the

model data length (i.e., with a time series of total 3360 winters

on 2117 spatial points for both observational and model data).

The derived singular vectors based on the SVD analysis depict

the leading spatial patterns of the interannual SAT variability

modes in observations and simulations, and the associated

expansion coefficients (ECs) contain the corresponding time

series during the 35-winter period for the observations (also

duplicates 96 times) and simulations in each model member.

In the following discussions, ECs for both observations and

simulations are normalized over the 3360 temporal points so

that their corresponding amplitude of SAT variability can be

directly compared based on their leading SVD patterns. The

statistical significance of temporal correlations between ob-

servations and simulations during the 35 winters is calculated

based on the two-sided Student’s t test with the effective degree

of freedom of the time series estimated by the lag-1 autocor-

relation following Bretherton et al. (1999).

3. Results

a. The leading WACC pattern based on the combined

analysis of observation and model data

Figures 1a and 1b show patterns of the leading covariability

mode of winter SAT anomalies and associated anomalous

surface pressure (PS) in observations and models based on the

SVD analysis, derived by regressions of SAT and PS anomalies

against the normalized ECs (i.e., ECOBS and ECAGCM). For

model simulations, regressions are calculated using the total 96

members of multimodel simulations, while regressions for

observations are based on one 35-winter period due to dupli-

cated observational data when performing the SVD analysis.

The observed and simulated SAT anomalies of the leading

SVD mode, which explains 40% of the total squared covari-

ance of the observed and simulated SAT variations, capture

the WACC pattern over the NA sector—that is, warm anoma-

lies centered over eastern Siberia (ES)/Alaska and cold anom-

alies over central NA—along with the anomalous Alaskan high

in bridging the two anomalous SAT centers. As previously

mentioned, the anomalous anticyclonic circulation is expected

to sustain the WACC pattern by advecting cold air from the

Arctic into central NA, and warm and moist air from the south

into the CBS (e.g., Kug et al. 2015; Guan et al. 2020a). While

the warming anomalies over the Arctic are well simulated, the

amplitude of cold anomalies over central NA is significantly

underestimated in models by about 50% (Fig. 1b). Anomalous

PS distribution associated with the WACC pattern as illus-

trated in Fig. 1 bears a strong resemblance to the North Pacific

Oscillation (NPO)/west Pacific (WP) teleconnection pattern,

a dominant mode of the midlatitude atmosphere over the NP

(e.g., Feldstein 2000; Linkin andNigam 2008; Tanaka et al. 2016;

Baxter and Nigam 2015; Dai and Tan 2019), and the pattern

associated with the so-called Alaskan ridge regime (Casola and

Wallace 2007; Straus et al. 2007; Carrera et al. 2004).

Notably, there have been recent debates on the approach

to extract the externally forced WACC variability using the

SVD approach (Mori et al. 2021; Zappa et al. 2021). Zappa

et al. (2021) suggested that rather than homogenous regres-

sions as used in Mori et al. (2019a) and also in this study,

heterogeneous regressions need to be applied to examine

the covarying WACC patterns between the observations and

AGCM simulations. It is found that the WACC patterns in

both observations and AGCM simulations based on homog-

enous regressions as shown in Fig. 1 are very close to those

derived based on heterogeneous regressions (figure not shown),

as shown in Mori et al. (2021). Also note that a very similar

WACC pattern as shown in Fig. 1a can be obtained as the first

1The 1979 winter represents the period from 1November 1979 to

31 March 1980, and so on.
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leading EOF mode of the observed 35-winter SAT anomalies

over the same region.

Anomalous SAT and PS patterns in individual models as-

sociated with the leading SVDmode are illustrated in Fig. 2 by

applying a similar regression approach but only using the ECs

corresponding to the 12 members of that model. Again, while

the Arctic warming anomalies are generally well simulated in

all these AGCMs, the observed cold anomalies over central

FIG. 2. As in Fig. 1, but for SAT (shading) and PS (contours) anomalies in (a) observations (duplicated from Fig. 1a) and (b)–(i) simu-

lations based on individual models.
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NA are significantly underestimated in model simulations,

along with a largely weakened anticyclonic anomalies near

Alaska. Particularly note that cold anomalies over central NA

and anomalous Alaskan high associated with the leading SVD

mode are largely absent in simulations from ESRL-GFSv2

(Fig. 2g). This will be further discussed in the following.

Vertical–horizontal cross sections of temperature and geo-

potential height anomalies in both observations and model

simulations associated with the leading SVD mode along the

axis linking the two anomalous SAT centers in the WACC

pattern (i.e., the green lines in Fig. 1) are further illustrated in

Fig. 3. Both observations and simulations suggest that SAT

anomalies associated with the WACC pattern are connected to

air temperature anomalies in a deep tropospheric layer up to

about 300 hPa; meanwhile, the anomalous surface high near

Alaska is closely linked to equivalent-barotropic ridge anomalies

vertically extending into the stratosphere (Figs. 3a,b). This indi-

cates that theWACCpattern is not likely a direct response to the

local surface boundary forcing; rather, it is driven by circulation

associated with large-scale tropospheric and stratospheric waves

as previously proposed (e.g., Blackport et al. 2019).

b. Optimal boundary conditions in forcing the interannual

WACC variability

Figure 4 presents the time series of the ECs for eachmember

of the eight AGCMs (gray lines) along with the ensemble-

mean EC over all 96 model members (blue line; hereafter

ECAGCM) and EC based on the observations (red line; ECOBS)

during the 35 winters. Pronounced internal atmospheric var-

iability associated with the WACC pattern is readily seen

by the spread of the ECs among individual model members.

Considering that the impact of internal atmospheric vari-

ability is largely averaged out by the large-ensemble mean,

the ECAGCM therefore represents the forced WACC vari-

ability due to boundary forcing, including SST and sea ice. As

ECAGCM is highly correlated with ECOBS (r 5 0.73), this

suggests that a considerable portion (;50%) of the observed

WACC variability can be ascribed to the SST and sea ice

variability specified as the boundary forcing in AGCMs.

Following Mori et al. (2019a), the prevailing SAT patterns

associated with the internal atmospheric variability can be

derived by an EOF analysis of intra-ensemble SAT anomalies

over the NA sector (208–908N,1208E–608W) based on model

simulations. Intra-ensemble SAT anomalies are defined as the

deviations of detrendedwinter SAT anomalies from ensemble-

mean fields across model simulations (i.e., by removing the

forced WACC variability). While the first leading mode of

internal SAT variability exhibits a Pacific–North America

(PNA)-like pattern, a similar WACC pattern in SAT anoma-

lies to that shown in Fig. 1a is identified as the second leading

FIG. 3. Longitude–height cross sections of T (shading) and Z (contours; dashed when negative) anomalies as-

sociated the WACC pattern in (a) observations and (b) simulations. These anomalies are derived by regressions

onto normalized ECOBS and ECAGCM and averaged over a 108 latitude band (58 north and south) along the green

lines in Fig. 1. As in Fig. 1, regressions based on models are calculated using the total 96 members of multimodel

simulations.

FIG. 4. The normalized EC time series for the observations

(ECOBS; red), and AGCM simulations for individual members

(gray) along with the mean averaged over 96 ensemble members

(ECAGCM; blue).
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mode (Fig. 5), indicating that theWACC pattern is an intrinsic

SAT variability mode over the NA sector.

Key regions of SST and sea ice anomalies responsible for the

observed and forced WACC variability can further be identi-

fied by the regression patterns of SST and sea ice anomalies

against the time series of ECOBS and ECAGCM during the 35

winters, respectively. Figure 6a presents regressed anomalous

SST (shading) and sea ice (contours) associated with the ob-

served WACC variability. The observed WACC pattern is

closely linked to sea ice loss over CBS as previously reported

(e.g., Kug et al. 2015; Blackport et al. 2019; Guan et al. 2020a),

although the causality is difficult to be determined based on the

observations due to the two-way interactions between Arctic

sea ice and atmosphere. The WACC pattern over the NA

sector is also found to be associated with negative SST anom-

alies over the central and western NP along 408N and sur-

rounding positive anomalies over the eastern part of the NP

basin and CBS, as well as a small patch of warm SST anomalies

over the tropical western Pacific (TWP) near 1608E. Although

La Niña–like negative SST anomalies over TEP are also dis-

cerned associated with the observed WACC variability, they

are not statistically significant (Fig. 6a).

Figure 7a similarly illustrates anomalous SST and sea ice

patterns associated with the forced WACC variability in

AGCM simulations by regressing these fields onto model en-

semble mean EC (i.e., ECAGCM) during the 35 winters. As in

the observations, the forced WACC pattern is also closely as-

sociated with sea ice loss over the CBS region, along with

negative SST anomalies over the central NP near 408N and

surrounding horseshoe-like shaped positive SST anomalies

over the eastern part of the NP basin and TWP near 1608E
(Fig. 7a). Note that the La Niña–type negative SST anomalies

over TEP associated with the WACC variability in the obser-

vations are not evident in model simulations (cf. Figs. 6a and

7a), suggesting that the SST variability over TEP associated

with El Niño/La Niña may not play a crucial role in driving

the forced WACC pattern. This is further supported by the

FIG. 5. The second leading internal SAT variability mode

(shading; dotted areas for 95% significance level) and associated

PS (contours; dashed if negative; interval: 0.4 hPa) anomalies

based on multimodel simulations as derived by an EOF analysis of

intra-ensemble SAT anomalies over 208–908N, 1208E–608W. Intra-

ensemble SAT anomalies are defined as the deviations of de-

trended winter SAT anomalies from ensemble-mean fields across

model simulations. SAT and PS anomalies shown here are ob-

tained by regressions onto the principal component (PC) of the

EOF2 of the internal SAT variability mode. The first EOF mode is

associated with El Niño. FIG. 6. (a) Regression patterns of SST (shading; dotted areas for

95% statistical significance level) and SIC (contours; dashed when

negative; interval: 2%) anomalies onto ECOBS. (b),(c) Time series

of SST (red) and SIC (blue) indices along with ECOBS (black). The

SST and SIC indices series are calculated by projecting winter SST

anomalies over 108–658N, 1208E–1208W and SIC anomalies over

508–758N, 1408E–1608W onto their corresponding patterns in (a).

Note that the signal of the SIC index is reversed so that a positive

SIC index corresponds to reduced SIC over CBS.
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similarly regressed anomalous SST and sea ice patterns but

corresponding to the forced WACC variability based on

12-member ensemble mean in each model (Fig. 8). While re-

gressed SST anomalies over the TEP are not statistically sig-

nificant in most of these AGCM simulations, the La Niña–type
negative SST anomalies over the TEP associated with the

forced WACC variability as in the observations is found in

three of the eight models (i.e., ECHAM5, ESRL-GFSv2, and

GEOS-5); in contrast, strong El Niño–type SST anomalies over

the TEP is found in several other AGCMs, including AM3,

CAM4, ESRL-CAM5, and LBNL-CAM5 (Fig. 8).

The interannual SST and sea ice indices closely associated

with the WACC variability can be derived by projecting the

observed winter SST and sea ice anomalies onto their corre-

sponding regressed anomalous patterns over respective key

regions identified in Figs. 6a and 7a: the CBS region (508–758N,

1408E–1608W) for sea ice, and the NP (108–658N, 1208E–1208W)

for SST.2 These projections are conducted independently for

observations and model simulations due to their slight differ-

ences in the corresponding regression patterns as shown in

Figs. 6a and 7a. The derived SST and sea ice indices associated

with the observed and simulated WACC variability are pre-

sented in Figs. 6b,c and 7b,c, respectively. Consistent with the

regressed SST and sea ice patterns in Figs. 6a and 7a, both the

time series of the observed (ECOBS) and forced WACC vari-

ability in models (ECAGCM) during the 35 winters are strongly

correlated with CBS sea ice index (r 5 0.63 and 0.57, respec-

tively; see Figs. 6c and 7c) and SST over the NP (r 5 0.73 and

0.74, respectively; Figs. 6b and 7b). Note that similar correla-

tions can be obtained if the same SST and sea ice indices are

used for observations andmodels by projections onto regressed

anomalous SST and sea ice patterns from either observations or

simulations (not shown).

Since the observed SST and sea ice are specified in AGCM

simulations and do not respond to atmospheric variability, the

close association between the forced WACC variability and

the derived SST/sea ice indices as shown in Fig. 7 indicates

important roles of sea ice and SST anomalies in driving the

WACC variability. In addition to CBS sea ice loss as previously

reported, these results indicate that the anomalous SST vari-

ability over the NP also plays a critical role for the formation of

the WACC pattern over the NA sector. Of particular interest,

this anomalous SST pattern, especially that based on the ob-

servations in Fig. 6a, is reminiscent of the North Pacific Mode

(NPM; Deser and Blackmon 1995; Park et al. 2012; Hartmann

2015; Peng et al. 2018a), which emerges as the second leading

mode of the observed interannual SST variability over the NP

basin (Fig. 9b) following the first leading mode that is closely

linked to El Niño/La Niña (Fig. 9a). While the NPM is inde-

pendent fromElNiño, a positive phase of theNPM as shown in

Fig. 9b is often observed prior to an El Niño winter, a so-called

seasonal fingerprinting mechanism to set the stage for El Niño
via tropical–extratropical interactions (e.g., Vimont et al. 2003;

Wang et al. 2014).

Figure 9d further illustrates that SAT anomalies associated

with the NPM indeed exhibit a WACC pattern over the NA

sector along with surface anticyclonic circulation anomalies

near Alaska, showing a strong resemblance of the observed

WACC pattern in Fig. 1a. The surface high anomalies near

Alaska associated with the NPM (Fig. 9d) are also linked

to vertically extended equivalent-barotropic high anomalies

(figure not shown, but similar to what is shown in Fig. 3), which

tends to be sustained by strong northward wave fluxes in the

lower troposphere from the central NP (Fig. 9d). Largely

similar SAT and PS anomalous patterns associated with the

NPM are also found in multimodel simulations (figure not

shown). In contrast, SAT anomalies over the NA sector asso-

ciated with El Niño/La Niña are less well organized and much

weaker than those associated with the NPM (Fig. 9c). These

results lend further support of a crucial role of the NPM-like

SST variability in driving the WACC pattern as suggested in

FIG. 7. As in Fig. 6, but for (a) regression patterns of SST and SIC

anomalies onto ECAGCM and (b),(c) time series of SST, SIC, and

ECAGCM based on model simulations. Note that the SST and SIC

time series are different between Figs. 6b,c and 7b,c, although

highly correlated, due to slight differences in the regression pat-

terns between observations (Fig. 6a) andmodels (Fig. 7a). Also see

details in the text.

2 Slight changes of these domains, for example, by including

TWP for the SST projections, will lead to largely similar results.
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Figs. 6 and 7, while El Niño/La Niña may not be critical in

sustaining the WACC variability over the NA sector. An im-

portant role of theNPM-like anomalous SST pattern underlying

the extremely cold anomalies over central NA and Californian

drought during the 2013/14 winter has also beenwidely reported

(e.g., Baxter and Nigam 2015; Hartmann 2015;Wang et al. 2014;

Seager et al. 2015; Lee et al. 2015).

To further quantify the relative roles of SST variability as-

sociated with the El Niño/LaNiña (i.e., EOF1 in Fig. 9a) and the

NPM (EOF2 in Fig. 9b) for the observed WACC variability,

Fig. 10 shows time series ofWACC indices during the 35winters

explained by EOF1, EOF2, and EOF1 and EOF2 together, re-

spectively. The WACC coefficient associated with each EOF

mode in a particular winter is derived by projecting its related

SAT anomalous pattern, constructed by the corresponding re-

gressed anomalous SAT distribution (i.e., Figs. 9c,d) weighted

by the principal component of the EOF mode, onto the ob-

served WACC pattern in Fig. 1a. Correlations between the

observed WACC variability (e.g., ECOBS) and the WACC in-

dices associated with EOF1, EOF2, and both EOF1 and EOF2

are 0.11, 0.57, and 0.57 (Fig. 10), respectively, confirming that

SST variability associatedwith theNPMplays amore important

role in contributing to the observedWACC variability than that

associated with El Niño/La Niña. In addition to a very weak

correlation to the ECOBS, El Niño/La Niña–related WACC

variability exhibits a very weak amplitude (Fig. 10a). Note that a

much higher correlation (;0.8) between ECOBS and the NPM

related WACC index is found after 1995, in contrast to a poor

correlation during a short period around 1990 (e.g., 1988–93;

Fig. 10b).A veryweak correlation betweenECOBS andECAGCM

is also noted around 1990 (Fig. 4), suggesting a more chaotic

nature of atmospheric variability during this period for a reason

that needs to be further understood.

A minor role of SST variability associated with the El Niño/
La Niña for the observed WACC variability over the NA

sector is further confirmed by a weak correlation (0.22) be-

tween the time series of the observed WACC variability

(ECOBS) and the ensemble-mean WACC indices based on

three FACTS AGCM simulations in the eof1-sst experiment

(Fig. 11c), in which only the observed monthly SST anomalies

associated with El Niño/La Niña are specified along with ob-

served sea ice and radiative forcing (see Table 1).

c. Relative role of internal processes versus SST and sea ice
forcing for the WACC variability

Relative importance of internal atmospheric variability

versus surface boundary forcing in driving the interannual

WACC variability over the NA sector is further investigated.

FIG. 8. (b)–(i) As in Figs. 6a and 7a, but for regressed SST and SIC patterns based on individual model simulations. Also shown is (a) the

observational counterpart, duplicated from Fig. 6a.
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Following the approach by Mori et al. (2019a), the total WACC

variance in observations and each of the eight AGCMs is es-

timated by the variance of their ECs corresponding to the

leading SVD mode during the 35 winters, which contains ef-

fects from both surface boundary forcing and internal atmo-

spheric variability. Calculations of the total WACC variance

in each model are based on ECs across model members. Note

that although only 12 ensemble members from each model

were used for the SVD analysis, to make full use of the large

model ensembles all available members are used for calcu-

lation of the total variance with their ECs during the 35 win-

ters derived by projecting the winter SAT anomalies onto

the singular vector of the model WACC pattern (i.e., Fig. 1b).

As shown in Fig. 12 (yellow bars), while four models capture

the total WACC variance comparable to the observations,

the variance is significantly underestimated in other four

models, consistent with their relatively weaker SAT amplitude

in the WACC pattern, particularly the cold anomalies over

central NA (see Figs. 1b and 2). The forced WACC variance

in each model can then be further estimated by the variance

of its corresponding ensemble mean EC during the 35 winters

averaged over all available members, and are denoted by red

squares in Fig. 12. Difference between the total (yellow bar)

and the forced variance (red square) for each model depicts

contribution from atmospheric internal processes, which shows

a range of 40%–60% of the total variance across these models.

While this result is largely consistent with previous studies that

suggested an important role of internal processes in regulating

the WACC variability over the NA sector (e.g., Sigmond and

Fyfe 2016; Peng et al. 2018b; Sun et al. 2016), it is the first time

that a quantitative estimate of the contribution of the atmo-

spheric internal processes to the total WACC variability over

the NA sector is derived in this study.

The percentages of the total WACC variance explained by

CBS sea ice and NP SST variability can be further estimated

from correlations (r) between the previously defined sea ice

(Figs. 6c and 7c)/SST indices (Figs. 6b and 7b) and ECs during

the 35 winters in observations and model simulations across all

available members (concatenated in time series) based on the

coefficients of determination (r2) approach. Figure 12 suggests

that CBS sea ice (gray bars) plays a minor role in driving the

WACC variability compared to SST anomalies over the NP

basin (blue bars) in seven out of the eight models. In contrast

to previous findings on the dominant role of BKS sea ice in

FIG. 9. Spatial patterns of SST anomalies associated with the (a) first and (b) second EOFmodes of the observed

winter SST anomalies over 308S–658N, 1208E–1058W from 1979 to 2013, derived by regressing winter SST anom-

alies onto the normalized PC1 and PC2 of the two leading interannual SSTmode. (c),(d) Regressed anomalous SAT

(shading; dotted areas for 95% significance level) and PS (contours; dashed when negative; interval: 0.5 hPa) onto

the normalized PCs, and associated wave activity flux (WAF) at 500 hPa (vectors; plotted only where WAFs are

greater than 0.1m2 s22). The 2D WAF is calculated based on similarly regressed streamfunction anomalies fol-

lowing Takaya and Nakamura (2001). All variables in this figure are based on observations.
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driving the WACC pattern over Eurasia (e.g., Mori et al.

2019a), on average only about 10% of the total WACC vari-

ance over the NA sector is explained by the interannual CBS

sea ice variability; in contrast, about 22% of total WACC

variability over the NA sector can be attributed to the NPM-

like SST variability. An exception is found in ESRL-GFSv2, in

which the sea ice effect dominates over that by SST anomalies.

As previously discussed in Fig. 2, this model is also marked as

an outliner with cold anomalies over central NA in theWACC

pattern largely absent. Although further investigations are

needed for complete understanding of the deficiencies in rep-

resenting the WACC pattern in ESRL-GFSv2, this could be

related to model insensitivity in responding to anomalous SST

forcing, as indicated by the largely statistically insignificant

SST signals over the NP associated with the forced WACC

variability in this model (Fig. 8g). As a result, the large-scale

Alaskan high anomalies and thus the cold anomalies over

central NA cannot be effectively established, leading to largely

regionally confined warming anomalies over the Arctic region

induced by local sea ice variability (Fig. 2g).

Since sea ice loss over CBS associated with the WACC

pattern is coincident with local warm SST anomalies (see

Figs. 6a and 7a), the impact of CBS sea ice loss on the WACC

variability as indicated by the r2 approach in Fig. 12 could be

partially included in that related to SST variability. The

WACC variance explained by a combination of CBS sea ice

and NPM-like SST variability is further estimated using a

multiple linear regression of the sea ice and SST indices onto

ECs, which is denoted by each green dot in Fig. 12. It is illus-

trated that the r2 of WACC variance explained by a combi-

nation of SST and sea ice indices is only slightly higher than

that by SST or sea ice alone, rather than a linear addition,

confirming that influences of CBS sea ice and SST variability

FIG. 10. Time series of the observed WACC variability (ECOBS;

black; duplicated from Fig. 4) and the WACC time series associ-

ated with the two leading SST modes in Fig. 9: (a) EOF1 (El Niño/
La Niña), (b) EOF2 (NPM), and (c) EOF1 1 EOF2. The WACC

coefficient associated with each EOFmode is derived by projecting

its related SAT anomalous pattern, constructed by the regressed

anomalous SAT distribution (Fig. 9) weighted by the PC of the

EOF mode in each winter, onto SAT anomalies of the observed

WACC pattern over 208–908N, 1208E–608W in Fig. 1a.

FIG. 11. (a) As in Fig. 4, but with model results only based on 36

members from three AGCMs (CAM4, ECHAM5, and ESRL-

GFSv2). (b),(c) As in (a), but for model results based on the

FACTS experiment amip_clim_polar and eof1_sst, respectively.

ECs for each model member during the 35 winters in the amip_

clim_polar and eof1_sst experiments are derived by projecting the

winter SAT anomalies onto the singular vector of the model

WACC pattern (i.e., Fig. 1b).
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on the WACC pattern are not exclusive from each other. The

lower values corresponding to green dots than those to red

squares in Fig. 12 generally indicate that factors other than the

combination of CBS sea ice andNP SST indices also contribute

to the forced WACC variability in the model.

The relative role of sea ice and SST variability in driving the

WACC variability is further examined by the FACTS experi-

ment amip_clim_polar with simulations from three AGCMs.

In this experiments, AGCMs are forced by climatological sea

ice and polar SST where climatological sea ice is present, so

that the forced model variability is largely ascribed to the ob-

served SST variations over the extrapolar region (608S–608N).

Note that the correlation between the observed WACC vari-

ability (ECOBS) and the forced WACC variability (ECAGCM)

based on these three AGCM simulations is slightly smaller

than that using all eight GCMs [0.65 in the former (Fig. 11a) vs

0.73 in the latter (Fig. 4)], possibly due to less total model en-

semblemembers to sufficiently suppress the internal variability

when only using three GCMs. In the experiment amip_clim_

polar (Fig. 11b), a correlation of 0.41 is found between ECOBS

and ECAGCM, which is statistically significant although this skill

is a bit lower than the regression model using SST anomalies

associated with theNPMas shown in Fig. 10b. This discrepancy

could be due to several reasons. The SAT anomalies associated

with the NPM variability derived by the regression model are

based on observations; therefore, other factors that are linked

to the NPM that also contribute to the WACC variability are

indirectly included in the regressionmodel, such as local sea ice

variability over CBS as shown in Fig. 6a. On the other hand, in

addition to sea ice, part of SST variability associated with the

NPM (e.g., over the CBS region where climatological sea ice is

present) is also excluded in the amip_clim_polar experiment.

Moreover, as previously discussed, using more model members

could also improve the correlation between ECOBS and ECAGCM

since only three AGCMs participated in the amip_clim_polar

experiment. Nevertheless, a very strong correlation (;0.75) is

found between the ECAGCM from the experiments amip_obs_rf

and amip_clim_polar based on the three AGCM simulations

(Figs. 11a,b), further suggesting that the forcedWACCvariability

is primarily driven by the extrapolar SST variability.

It is noteworthy that the WACC variability in response

to both CBS sea ice loss and the NPM-like SST pattern is

systematically underestimated in models relative to its obser-

vational counterpart (Fig. 12), possibly due to lack of ocean–

ice–atmosphere coupling in AGCM simulations and potential

model errors (Deser et al. 2016; Mori et al. 2019a,b; Screen and

Blackport 2019). It has also been argued that roles of the sea ice

and SST variability in driving the WACC pattern using the

coefficients of determination approach can be overestimated in

observations (Screen and Blackport 2019). For example, both

the observed WACC pattern and sea ice/SST anomalies over

the CBS can be induced by the anomalous Alaskan high, which

can be forced either by surface boundary conditions or internal

variability (Guan et al. 2020a; Blackport et al. 2019). Because

of the prescribed SST and sea ice patterns, these two-way in-

teractive processes are not fully resolved in AGCMs, therefore

leading to the underestimated correlations between sea ice/

SST and the WACC variability (Screen and Blackport 2019;

Mori et al. 2019b).

4. Summary and discussion

A ‘‘warm Arctic, cold continents’’ (WACC) pattern has

been observed in the interannual variability and long-term

trend of winter surface air temperature (SAT) anomalies over

mid- to high latitudes of the Northern Hemisphere. The un-

derlying physics regulating the WACC variability, however,

remains largely elusive. In particular, most of the existing

studies toward improved understanding of the WACC vari-

ability have been focusing on theEurasian continent, andmuch

less attention has been paid to the WACC variability over the

NA sector. While limited studies indicate that both surface

boundary forcing, including that due to the sea ice and SSTs,

and atmospheric internal variability could be responsible for

the formation of the WACC pattern over the NA sector, their

relative roles are difficult to determine based on observations

alone. In this study, with a specific focus on the interannual

time scales, connections between the WACC variability, tro-

pospheric atmospheric circulation, Arctic sea ice, and SST

anomalies over the NP are investigated; in particular, contri-

butions of internal drivers versus surface boundary forcing to

the WACC variability over the NA sector are quantitatively

estimated for the first time using a combined analysis of ob-

servations and large-ensemble AGCM simulations.

Our results confirm a crucial role of internal atmospheric

variability in generating the WACC over the NA sector as pre-

viously reported (e.g., Sigmond and Fyfe 2016; Peng et al. 2018b;

Sun et al. 2016). The forced WACC variance, estimated by the

large-ensemble mean from AGCM simulations, explains about

half of total interannual WACC variance. Optimal boundary

forcing sources in generating theWACCvariability over theNA

sector are further identified, which are characterized by sea ice

variability over CBS and a NPM-like anomalous SST pattern

FIG. 12. Total WACC variance in observations and eight

AGCMs (yellow bars, scaled by variance in observations). The red

squares indicate total forced WACC variance, calculated based on

the ensemble-mean ECAGCM from each model. WACC variances

explained by NP SST (blue bars) and CBS sea ice (gray bars) are

estimated by r2 between ECs in observations or simulations from

all available members and the SST/SIC indices (error bars repre-

sent one standard deviation of explained variances across ensemble

members). Variances explained by a combination of NP SST and

CBS sea ice anomalies are denoted by dark green dots. See text for

more details.
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over the NP basin. In contrast to a dominant role of Arctic sea

ice for the WACC variability over Eurasia as previously re-

ported, the NPM-like SST pattern is found to be the major

boundary forcing in driving the WACC variability over the NA

sector. While internal atmosphere variability is largely unpre-

dictable, the identified surface boundary forcing such as the NP

SST anomalies responsible for the forced WACC variability

over the NA sector can serve as important predictors for sea-

sonal climate predictions over the NA region.

As the NPM-like SST pattern involve both anomalous SST

signals over the extratropical NP basin and over the TWP near

1608E (Fig. 6a), the relative importance of tropical versus ex-

tratropical SST anomalies in exciting the WACC variability

over the NA sector remains uncertain (e.g., Hartmann 2015;

Lee et al. 2015; Baxter and Nigam 2015). For example, Lee

et al. (2015) concluded that the NPO/WP pattern across the

NA sector can be forced by multiple boundary forcing in-

cluding anomalous SST in the TWP and TEP, as well as over

the extratropical NP. Previous observational and modeling

studies also demonstrated that the extratropical SST anomalies

are primarily driven by atmospheric circulation (Kumar and

Chen 2018; Kumar and Wang 2015; Bretherton and Battisti

2000), which itself could be excited in responding to SST

anomalies over TWP (e.g., Hartmann 2015; Sung et al. 2019),

or due to the mid- to high-latitude internal dynamics, for ex-

ample, associated with the NPO/WP variability (e.g., Baxter

andNigam 2015). Therefore, the relative role of tropical versus

extratropical SST anomalies associated with the NPM in

driving the WACC pattern over the NA sector warrants fur-

ther investigations in a future study.

Significant discrepancies are found in the forced WACC sig-

nals between observations and AGCMs, with the WACC vari-

ability in response to bothCBS sea ice loss and theNPM-like SST

pattern systematically underestimated in model simulations.

These discrepancies between models and observations could be

explained by the lack of ocean–ice–atmosphere coupling in

AGCMs along with model deficiencies in depicting atmospheric

responses to sea ice and SST variability. In this study, a combined

analysis approach using both observations and multimodel large-

ensemble simulations is used to extract a leading interannual

WACC pattern in model simulations similar to the observed

counterpart.Many of theseAGCMshave difficulty in realistically

capturing theWACC pattern as the leading mode of winter SAT

anomalies in response to the specified boundary forcing, possibly

due to an important role of internal atmospheric processes in

shaping the WACC variability as suggested by this study.
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