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ABSTRACT: An L2 regularized logistic regression model is developed in this study to predict weekly tropical cyclone
(TC) genesis over the western North Pacific (WNP) Ocean and subregions of the WNP including the South China Sea
(SCS), the western WNP (WWNP), and the eastern WNP (EWNP). The potential predictors for the TC genesis model
include a time-varying TC genesis climatology, the Madden–Julian oscillation (MJO), the quasi-biweekly oscillation
(QBWO), and ENSO. The relative importance of the predictors in a constructed L2 regression model is justified by a for-
ward stepwise selection procedure for each region from a 0-week to a 7-week lead. Cross-validated hindcasts are then gen-
erated for the corresponding prediction schemes out to a 7-week lead. The TC genesis climatology generally improves the
regional model skill, and the importance of intraseasonal oscillations and ENSO is regionally dependent. Over the WNP,
there is increased model skill over the time-varying climatology in predicting weekly TC genesis out to a 4-week lead by
including the MJO and QBWO, whereas ENSO has a limited impact. On a regional scale, ENSO and then either the MJO
or QBWO are the two most important predictors over the EWNP and WWNP after the TC genesis climatology. The MJO
is found to be the most important predictor over the SCS. The logistic regression model is shown to have comparable reli-
ability and forecast skill scores to the ECMWF dynamical model on intraseasonal time scales.

SIGNIFICANCE STATEMENT: Skillful forecasts of tropical cyclone activity on time scales from short-range to sea-
sonal are now issued operationally. Although there has been great progress in the understanding of physical mecha-
nisms driving tropical cyclone (TC) activity, intraseasonal prediction of TCs remains a significant scientific challenge.
This study develops a statistically based intraseasonal model to predict weekly TC genesis over the western North
Pacific Ocean basin. The intraseasonal prediction model developed here for TC genesis over the western North Pacific
basin shows skill extending out to four weeks. We discuss the regional dependence of the model skill on ENSO and
other subseasonal climate oscillations. This approach provides skillful intraseasonal forecasting of TCs over the western
North Pacific basin.
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1. Introduction

Tropical cyclones (TCs) are one of the most destructive
natural disasters worldwide, posing a major threat to life and
property over coastal and adjacent inland regions (Kleinen
2007; Zhang et al. 2009; Bakkensen et al. 2018; Klotzbach et al.
2018). To provide improved guidance for TC-associated
disaster prevention and mitigation, there has been recent

increasing attention on the improvement of extended-range
prediction of TC activity (Vitart and Robertson 2018; Vitart
et al. 2019; Merryfield et al. 2020). Over the past few decades,
there has been significant progress made in the understanding
of the physical mechanisms driving TC activity (Bender et al.
2010; Vecchi et al. 2019; Zhang et al. 2020). Skillful forecasts
of TC activity on time scales from short-range (i.e., day to
day) to seasonal are now issued operationally (Bauer et al.
2015; Klotzbach et al. 2019).

The skill of short-range TC forecasts arises largely from the
initial conditions and generally shows an increasing trend
associated with increased model resolution and improved
data assimilation systems (Bauer et al. 2015). On seasonal
time scales, TC forecasts largely depend on slowly varying
large-scale environmental conditions such as sea surface tem-
peratures (SSTs) (Gray 1979, 1984; McBride and Zehr 1981;
Goldenberg and Shapiro 1996). Statistical models (Gray et al.
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1992; Chan et al. 2001; Saunders and Lea 2005), hybrid
statistical–dynamical models (Vecchi et al. 2011; Klotzbach
et al. 2020), and dynamical models (Vitart and Stockdale
2001; Camargo et al. 2005) have been successfully imple-
mented for seasonal outlooks of TC activity (Klotzbach et al.
2019). On intraseasonal time scales, forecasts of TC activity
are generally based on relationships with intraseasonal oscilla-
tions (ISOs), convectively coupled equational waves, and
SST (Leroy and Wheeler 2008; Lee et al. 2018; Vitart and
Robertson 2018; Camargo et al. 2019).

Intraseasonal prediction of TCs remains a significant scien-
tific challenge, although some statistical, dynamical, and
hybrid statistical–dynamical techniques have been developed
to predict TCs on intraseasonal time scales (Leroy and
Wheeler 2008; Elsberry et al. 2010, 2014; Zhu et al. 2017;
Jiang et al. 2012, 2018; Klotzbach et al. 2019; Gregory et al.
2020). In an effort to arrive at a seamless suite of forecast
products, a subseasonal-to-seasonal (S2S) project was initi-
ated by the World Weather Research Program and the World
Climate Research Program (Vitart et al. 2017). One of the
key focuses of this project was to assess the skill of 11 dynami-
cal models from operational agencies for intraseasonal predic-
tion of extreme climate and weather events including TC
activity, thus improving extended-range forecasting (Vitart
et al. 2010; Vitart and Robertson 2018).

During recent years, some dynamical models have shown
remarkable improvement in forecasting the Madden–Julian
oscillation (MJO; Madden and Julian 1971), which is thought
to be a major predictability source at intraseasonal time scales
(Vitart 2014; Lim et al. 2018; Kim et al. 2019). Statistically
based models for the intraseasonal prediction of TCs have
shown skill comparable to techniques using either dynamical
models or hybrid statistical–dynamical models (Vitart et al.
2010; Kim et al. 2018; Wang et al. 2019). Dynamical models
still have considerable room for improvement in their predic-
tion of ISO and tropical waves (Serra et al. 2014; Jiang et al.
2020).

Over the western North Pacific (WNP) Ocean basin, sev-
eral prior studies have investigated intraseasonal forecasts of
TC activity using dynamical models or statistical–dynamical
techniques (Elsberry et al. 2010, 2014; Camargo et al. 2019).
Statistical models have also been developed for skillful intra-
seasonal prediction of TC genesis. These statistical forecasts
have focused on the Southern Hemisphere (Leroy and
Wheeler 2008), or on the eastern North Pacific and North
Atlantic Ocean basins (Slade and Maloney 2013), while to
our knowledge, no publications have outlined a statistical
model for intraseasonal prediction of TC genesis in the WNP
basin. The factors affecting TC genesis in the WNP basin are
somewhat different than those driving TC activity in the
Southern Hemisphere, eastern North Pacific, and North
Atlantic basins. This study uses a method that is similar to
that of Leroy and Wheeler (2008) and Slade and Maloney
(2013) but with a focus on the WNP. We construct a statistical
prediction model for intraseasonal TC genesis over the WNP
basin and test the prediction skill of the model. The statistical
regression model utilized here is different from those two

papers, in that it uses a L2 regularized model to largely over-
come potential overfitting issues.

Section 2 describes the datasets used in this study and the
logistic model development for predicting weekly TC genesis.
Section 3 discusses the relative importance of potential pre-
dictors for the intraseasonal prediction model. Section 4 pre-
sents the details of the construction of the intraseasonal
prediction model for WNP TC genesis. Section 5 assesses the
skill of the logistic regression model for predicting weekly TC
genesis, compares the model skill with the European Centre
for Medium-Range Weather Forecasts (ECMWF) model, and
develops a real-time forecast scheme for this model using a
method that does not involve filtering. Section 6 summarizes
the study.

2. Data and method

a. Data

TC data are obtained from the Joint Typhoon Warning
Center (JTWC) best-track dataset (Chu et al. 2002), which
includes latitude, longitude, minimum central pressure, and
maximum sustained wind at 6-h intervals. Only TCs reaching
tropical storm intensity (i.e., $34 kt; 1 kt ≈ 0.51 m s21) during
the extended boreal summer (i.e., 1 May–31 October) from
1979 to 2019 over the WNP basin (08–408N, 1008E–1808) are
considered in this study. The genesis time and location for
each TC is defined as the first time and location at which the
TC reached 34 kt during its lifetime. Since there are substan-
tial differences in physical processes driving TC genesis over
subregions of the WNP basin (Wang et al. 2000; Wang et al.
2007; Li and Zhou 2013a), optimal predictions for subregions
may be achieved using different predictors than those for
forecasts over the whole basin (Leroy and Wheeler 2008). In
this study, the whole WNP is divided into three subregions
including the South China Sea (SCS), the western WNP
(WWNP), and the eastern WNP (EWNP) (Fig. 1). The selec-
tion of these three subregions is based on both physical and
operational considerations (Rasmusson and Carpenter 1982;
Wang et al. 2007; Wang and Chan 2002), with the boundary at
1208E providing a natural geographical separation between
the waters of the western Philippine Islands and the eastern

FIG. 1. Western North Pacific (WNP) study area and the three
subregions as defined in this study: the South China Sea (SCS), the
western WNP (WWNP), and the eastern WNP (EWNP). TC gene-
sis locations from 1 May to 31 Oct from 1979 to 2019 are shown.

J OURNAL OF CL IMATE VOLUME 352460

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 09/20/23 04:24 AM UTC



Philippine Islands, and the boundary at 1408E roughly sepa-
rating regions that are known to behave oppositely in
response to El Niño–Southern Oscillation (ENSO) (Wang
and Chan 2002; Camargo and Sobel 2005; Zhao et al. 2010).

Among the latest generation of WNP-based subseasonal
forecast models, the ECMWF model has the best skill in pre-
dicting TC genesis anomalies at 2–3-week lead times in most
basins (Lee et al. 2018, 2020). To compare the forecast skill of
the dynamical and statistical predictions on intraseasonal time
scales, hindcasts of TC genesis prediction by the ECMWF
model are obtained from the S2S dataset. Further details of
the S2S dataset are described in Vitart et al. (2017). The
ECMWF model has a 46-day forecast lead time (∼6-week
lead) and 11 ensemble members for reforecasts. These refore-
casts are run twice per week (Monday and Thursday) from
2000 to 2019. TCs are tracked in the dynamical model hind-
casts using the method described in Vitart and Stockdale
(2001). The TC tracks contain daily values of maximum sus-
tained winds and storm locations. Note that hindcasts of the
1-week lead generated by the ECMWF model include preex-
isting storms (Lee et al. 2018). Since the ECMWF model used
here is not able to simulate the highest observed TC intensi-
ties, only TCs that reach the tropical storm wind speed thresh-
old in the model, which is defined as the 18th percentile of the
lifetime maximum intensity cumulative density distribution
(i.e., 24 kt), are considered in this study, following the method
of Lee et al. (2018). For the dynamical model, the probability
of TC genesis is computed from the fraction of the 11 ensem-
ble members, defined as

pi �
1
M

∑M

j�1
Pi,j, (1)

where M is the number of ensemble members and Pi,j is the
genesis prediction from the jth ensemble member for the ith
forecast; Pi,j is 0 for no genesis and is 1 for one or more storm
genesis events during the forecast period.

To obtain the ENSO index, SST data are computed from
the Hadley Centre sea ice and sea surface temperature
(HadISST) dataset (Rayner et al. 2003). Outgoing longwave
radiation (OLR) is used to quantify intraseasonal modes.
Daily mean OLR data from 1979 to 2019 with a horizontal
resolution of 2.58 latitude 3 2.58 longitude are obtained from
the National Oceanic and Atmospheric Administration
(NOAA) (Liebmann and Smith 1996). Using empirical
orthogonal function (EOF) analyses of physical variables
(e.g., OLR, precipitation, and winds) as in previous studies
(Wheeler and Hendon 2004; Lee et al. 2013; Li and Zhou
2013a; Zhao et al. 2015a,b, 2016), the two leading ISO modes
with a prevailing period of 10–20 days [quasi-biweekly oscilla-
tion (QBWO)] and 30–60 days (MJO) are obtained using
OLR. Both of these modes can significantly affect TC genesis
over the WNP basin and are consequently selected as poten-
tial predictors for intraseasonal prediction of TCs.

b. L2 regularized logistic regression model

We now develop a statistical model for intraseasonal pre-
diction of TC genesis over the WNP basin using multiple

logistic regression. Logistic regression has been widely used in
physical and social science (Leroy and Wheeler 2008; Ogutu
et al. 2012; Zhou et al. 2020), and is useful for probabilistic
forecasts as it allows the input predictand to be dichotomous
(0 or 1) and forecasts a probability between 0 and 1. A dichot-
omous index is used to represent whether the event occurs or
not, denoted by 1 (if the event occurs) or 0 (if it does not
occur). The logistic regression hypothesis function hb(x) is
defined as follows:

hb x( ) � P̂ � eb01b1x11b2x21···1bmxm

1 1 eb01b1x11b2x21···1bmxm
, (2)

where P̂ is the predicted probability of TC genesis with a
value between 0 and 1, (x1, x2, … , xm) are the predictors, and
(b1, b2, … , bm) represent the regression coefficients of the
predictand and the historical predictor values.

Regression models tend to construct a hypothesis function
that fits all of the training samples if possible. If the model is
trained for too long on a limited sample dataset, it begins to
learn the noise and overfits the training data. That is, an over-
fitted model is useful only for the training data and not for
independent data. If a model cannot generalize well to new
data, then it will not be successful in real-time prediction. In
addition, if overfitting occurs due to model complexity, it
makes sense to reduce the number or the weight of certain
predictors. However, it is hard to know which features to
remove from a specific model in advance. Regularization
methods can be particularly helpful to avoid overfitting. These
methods work by adding a penalty term, such as the L1 norm
and L2 norm, to the model’s loss function (Ng 2004; Ogutu
et al. 2012). A regression model that uses the L2 regulariza-
tion technique is termed a ridge regression model (Hoerl and
Kennard 1970). Ridge regression shrinks the regression coeffi-
cients by imposing a penalty on their size, rather than discard-
ing a subset of the predictors, to reduce the prediction error
of the model. In this study, a model with L2 regularized logistic
regression (adding an L2 norm to the loss function of logistic
regression) is developed to generate hindcasted probabilities.
The loss function of L2 regularized logistic regression is
expressed as

J b( )� 2
1
n

∑n

i�1
oi loghb xi( ) 1 1 2 oi( ) log 1 2 hb xi( )[ ]{ }

1
l

2n

∑m

j�1
b2
j , (3)

where the term oi is the observed probability of a cyclogen-
esis event and l denotes the penalty parameter. A larger l
value will tend to shrink the regression coefficients toward
zero. The first term on the right-hand side of Eq. (3) is the
original logistic regression loss, and the second term repre-
sents the L2 penalty (i.e., ridge penalty). Notice that
the intercept b0 has been left out of the penalty term. The
regression coefficients are calculated by minimizing the
loss function J(b). The logistic regression with L2 regulari-
zation can shrink the regression coefficients to avoid
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overfitting while retaining all of the variables in the model.
The importance of the variable can be ignored when the
regression coefficient is close to zero.

In this study, we use L2 regularized logistical regression
to generate forecasts out to a 7-week lead (W0–W7) for TC
genesis probability following Leroy and Wheeler (2008) and
Slade and Maloney (2013). To eliminate potential bias in
the model with TCs forming on a specific start day for each
week (e.g., Sunday vs Monday), we develop the model using
overlapping weeks, starting on every day. In addition, W0 is
defined as the 7-day period centered on each day that the
model is initialized, which provides no predictability but is
used as a means of comparison. Individual models are devel-
oped for week leads from W0 to W7 for the whole WNP
basin and for the three subregions (i.e., SCS, WWNP, and
EWNP).

3. Predictor selection scheme

a. Climatology of TC genesis

A climatology of TC genesis is constructed based on obser-
vations during 1979–2009 for the whole WNP basin and for
each of the three subregions, representing their corresponding
average occurrence probability of weekly TC genesis. This
climatology is selected as a predictor to characterize the

seasonal cycle of weekly TC genesis (Fig. 2). Since sample
sizes are relatively small, a raw climatological probability
calculated by the observed weekly TC genesis probability
(a binary probability) for every year is quite noisy (dashed
curve), and the use of this raw climatology as a predictor can
affect the performance of the regression model. Therefore, a
smoothed climatology (solid curve) is adopted as a predictor
instead of using the raw climatology for the whole WNP basin
and for the three subregions. As was done by Leroy and
Wheeler (2008) for the Southern Hemisphere, a smoothed cli-
matology was similarly obtained by applying a low-pass filter
to the raw climatology.

b. ENSO

In addition to the seasonal cycle of TC genesis, intrasea-
sonal TC prediction also needs to include predictors on
interannual time scales to represent the low-frequency
large-scale environmental conditions affecting TC genesis.
Due to its significant impacts on TC activity over the WNP
basin (Lander 1994; Wang and Chan 2002; Camargo and
Sobel 2005; Zhao et al. 2011; Patricola et al. 2018), ENSO is
selected as a potential predictor for intraseasonal modula-
tion of TC genesis. More TCs generally form over the south-
eastern region of the WNP basin, track westward and have
an increased chance of intensification during El Niño years
relative to La Niña years. As shown in Fig. 3, there is no

FIG. 2. Climatology of weekly tropical cyclogenesis probability for 1979–2009 in the full WNP
and for the three subregions SCS, WWNP, and EWNP. The dashed curve is a raw climatology
derived from observations, and the solid curve represents a smoothed climatology. Tick marks
on the x axis show the first day of each month. Vertical lines denote the time range used in this
study.
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significant difference in the climatological TC genesis prob-
ability over the whole WNP basin between El Niño and La
Niña years. However, when examining the climatology of
TC genesis probability for the three subregions, the peak in
the WWNP subregion shows a lower or higher probability
than in the EWNP subregion during El Niño or La Niña
years, respectively, consistent with the previously reported
significant impacts of ENSO on TC genesis location. In this
study, ENSO is represented by the oceanic Niño index
(ONI), defined as the 3-month running mean of SST anoma-
lies over the Niño-3.4 region (58S–58N, 1708–1208W). Strong
El Niño or La Niña years are defined as 5 consecutive over-
lapping 3-month periods when the ONI index anomaly is
greater than 10.58C or less than 20.58C, respectively. This
anomaly must also equal or exceed 18C for at least 3 consec-
utive months during this time period. Following this defini-
tion, there are 15 strong ENSO years including eight strong
El Niño years (1982, 1987, 1991, 1994, 1997, 2002, 2009, and
2015) and seven strong La Niña years (1988, 1995, 1998,
1999, 2007, 2010, and 2011) during 1979–2019.

c. MJO

Intraseasonal oscillations are regarded to be the main
predictability source for intraseasonal prediction (Leroy
and Wheeler 2008; Slade and Maloney 2013; Jiang et al.
2018; Vitart and Robertson 2018). Several studies have

documented a strong modulation of TC activity by ISOs
(Maloney and Hartmann 2000; Kim et al. 2008; Jiang et al.
2012; Li and Zhou 2013a; Zhao et al. 2015a,b), with more
TCs during convectively active ISO phases and fewer TCs
during convectively suppressed ISO phases. The Madden–
Julian oscillation (Madden and Julian 1971) mode is a domi-
nant ISO mode in the tropics. During the boreal summer,
the MJO over the WNP basin shows a significant northward
or northwestward propagation (Murakami 1984; Kemball-
Cook and Wang 2001; Lee et al. 2013), which is distinct
from the MJO during boreal winter that predominantly
propagates eastward (Madden and Julian 1971). However,
two studies have used the real-time multivariate MJO
(RMM) index developed by Wheeler and Hendon (2004) as
a main predictability source for the development of an intra-
seasonal prediction model for TC genesis (Leroy and Whee-
ler 2008; Slade and Maloney 2013). While the RMM index
throughout the year describes MJO activity, it is not
expected to fully represent seasonality and regionality of
the MJO due to possible impacts from extratropical regions
(Kikuchi et al. 2012).

To represent boreal summer MJO activity (Kikuchi et al.
2012; Lee et al. 2013), the MJO index in this study is con-
structed based on empirical orthogonal function (EOF)
analysis of daily OLR anomalies over the region 08–408N,
1008E–1808 from 1 May to 31 October for 1979–2019

FIG. 3. TC genesis probability curves during strong El Niño (solid curve) and La Niña (dashed
curve) years for the full WNP and for the three subregions SCS, WWNP, and EWNP. Strong El
Niño years are 1982, 1987, 1991, 1994, 1997, 2002, 2009, and 2015. Strong La Niña years are 1988,
1995, 1998, 1999, 2007, 2010, and 2011. The average probability from 1 May to 31 Oct for El
Niño and La Niña years is in parentheses.
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following previous studies (Jiang et al. 2012; Zhao et al.
2015a). The OLR anomalies are first filtered by a Lanczos
bandpass filter (Duchon 1979) with 30–60-day cutoff periods
before EOF analysis. The leading two EOF modes explain
19.8% and 13.8% of the variance of 30–60-day bandpass-
filtered OLR anomalies, respectively. These two EOF
modes can well represent boreal summer MJO activity over
the WNP (Fig. 4) and are consistent with results from
Kikuchi et al. (2012) and Lee et al. (2013). The correspond-
ing principal components (PCs) of these EOF modes are

hereinafter referred to as MJO-PC1 and MJO-PC2. We fur-
ther examine the modulation of TCs over the WNP basin by
MJO events when its amplitude, defined by the first two
leading PCs (i.e., MJO-PC12 1 MJO-PC22), is $ 1.0. As
shown in Fig. 4, significantly more TCs occur during the con-
vectively enhanced MJO phases (i.e., phases 4–7) whereas
fewer TCs form during the convectively suppressed MJO
phases (i.e., phase 8 and phases 1–3). Given the close rela-
tionship between TC genesis over the WNP basin and MJO
activity, both indices (i.e., MJO-PC1 and MJO-PC2) are

FIG. 4. (a) Boreal summer intraseasonal oscillation (MJO) activity depicted by the leading two principal compo-
nents (PC1 and PC2; only a partial length of the series is displayed) of daily outgoing longwave radiation (OLR)
anomalies. The OLR anomalies have been filtered by a Lanczos bandpass filter with cutoff periods of 30 and 60 days.
Also shown are the variance contributions of the principal components. (b)–(i) TC genesis locations (red dots) and
the number of TCs during MJO phases along with the 30–60-day-filtered OLR anomalies for the period of 1 May–31
Oct from 1979 to 2019. Also listed is the number of TCs counted (the second number) and the number of MJO days
(the first number) with an amplitude$1 for phase 1–phase 8.
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selected as potential predictors for the multiple logistic
regression model.

d. QBWO

The quasi-biweekly oscillation is regarded as another
dominant ISO mode and is characterized by westward or
northwestward propagation and a 10–20-day periodicity
(Li 1996; Zhao et al. 2015a, 2016). Studies have suggested
that the QBWO has stronger kinetic energy variance than
the MJO and consequently modulates TCs over the WNP
through changes in the large-scale environment (Li 1996;
Li and Zhou 2013a,b; Zhao et al. 2016). The QBWO is also
extracted using EOF analysis but is based on 10–20-day

bandpass-filtered OLR anomalies. The first two leading
modes explain 8.5% and 7.4% of the variance of 10–20-day
bandpass-filtered OLR anomalies, respectively, represent-
ing the westward or northwestward propagation of the
QBWO (Fig. 5). Similarly, a strong modulation by the
QBWO on TC genesis is clearly evident in Fig. 5, with
more TC genesis largely clustered over the regions with
enhanced QBWO-associated convective activity (phases
2–5) in comparison with that with suppressed phases
(phase 1 and phases 6–8). Zhou et al. (2018) also suggested
a significant increase in TC growth rate during the convec-
tively enhanced QBWO phases. The PCs of the first two
leading EOF modes for the QBWO (i.e., QBWO-PC1 and

FIG. 5. As in Fig. 4, but for the quasi-biweekly oscillation (QBWO). The OLR anomalies have been filtered by a
Lanczos bandpass filter with cutoff periods of 10 and 20 days. Also listed is the number of TCs counted and the num-
ber of QBWO days with an amplitude$1 for phase 1–phase 8.
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QBWO-PC2) are also included as potential predictors in
the regression model.

e. Importance of the combined modulation of TCs by
ENSO and intraseasonal oscillations

As highlighted earlier, ENSO is one of the most important
interannual air–sea coupled modes, and the MJO and QBWO
are two of the most important intraseasonal modes that can
significantly modify the large-scale environment, thus affect-
ing TC activity (Camargo et al. 2007, 2009; Li and Zhou
2013a,b; Zhao et al. 2015a,b, 2016; Zhao and Wang 2019;
Hansen et al. 2020). TC genesis largely depends on TC-favor-
able large-scale environmental conditions, such as increased
low-level vorticity, increased midlevel moisture, reduced ver-
tical wind shear, and increased SST (Gray 1979; 1984;
McBride and Zehr 1981; Goldenberg and Shapiro 1996).
Using a genesis potential index (GPI) developed by Emanuel
and Nolan (2004), Zhao et al. (2015a,b) suggested that rela-
tive humidity and low-level relative vorticity appeared to be
the two most important environmental fields modulated by
intraseasonal oscillations that then consequently impacted TC
genesis over the WNP basin. Camargo et al. (2007) also inves-
tigated the relative importance of large-scale factors associ-
ated with ENSO in modulating TC genesis through a GPI
analysis and found that both increased relative humidity and
increased low-level relative vorticity were primarily responsi-
ble for the eastward shift in genesis location in the western
North Pacific when El Niño conditions occurred.

However, the influence of ENSO and ISO on TC genesis is
not independent or linear. Previous studies have emphasized
the combined modulation of TC genesis over the WNP basin
by the two leading ISO modes (i.e., QBWO and MJO)
through changing large-scale conditions for TC genesis (Mao
and Chan 2005; Li and Zhou 2013a,b; Zhao et al. 2015b). Li
and Zhou (2013a) suggested that the WNP is controlled pre-
dominantly by MJO-induced positive OLR anomalies during
convectively suppressed QBWO phases, leading to a signifi-
cant suppression of TC genesis. However, TC suppression in
the convectively suppressed MJO phases is generally weaker
than during the convectively enhanced QBWO phases, mainly
due to the counterbalance of the QBWO and MJO-associated
large-scale conditions.

Moreover, a few studies have also highlighted the com-
bined effect of ENSO and the ISO on WNP TC genesis (Li
et al. 2012; Klotzbach and Oliver 2015; Han et al. 2019). For
example, Li et al. (2012) found that ENSO can affect both
genesis location and frequency of TCs by changing the loca-
tion and intensity of MJO-associated convection, with stron-
ger modulation of TC genesis by the MJO during El Niño
years relative to that during neutral and La Niña years. Han
et al. (2019) suggested that TC genesis modulation by the
QBWO and ENSO is mainly related to spatial changes in the
large-scale environment and synoptic-scale eddy kinetic
energy that affect TC genesis associated with active or inac-
tive phases of the QBWO under different ENSO phases.

The respective impact of ENSO and the ISO and their com-
bined effect on TC genesis on intraseasonal time scales are

considered in this study. We construct a statistical intraseaso-
nal prediction model of TC genesis over the WNP basin. We
find that a statistical prediction model has better skill in cap-
turing TC genesis on intraseasonal time scales by incorporat-
ing both ENSO and ISO indices relative to a model using just
ENSO or the ISO individually. Additionally, as mentioned in
section 3b, ENSO significantly impacts TC genesis in the
WWNP and EWNP but has a minimal impact on SCS TC
genesis. When the convective centers of the MJO and QBWO
are located over the SCS and WWNP, there is a stronger
modulation of TC genesis in the SCS and WWNP than when
convectively driven ISO modulation is located over the
EWNP. We will show in section 5a that both ENSO and the
ISO considerably impact the regional differences in TC gene-
sis prediction skill.

4. Development of logistic regression model

a. Real-time prediction

The approach to construct the logistic regression model for
intraseasonal prediction of TC genesis over the WNP basin in
this study largely follows the approach employed by Leroy
and Wheeler (2008) and Slade and Maloney (2013). To repre-
sent what would be available for a real-time forecast, all data-
sets utilizing the ONI are lagged by one month, and the four
indices representing the MJO and QBWO are lagged by one
day. The climatological values for the week being forecast
(note that climatology is the only predictor not lagged at each
forecast lead) and the five lagged predictors are used to calcu-
late regression coefficients that are then input into Eq. (1) to
generate forecasts out to a 7-week lead for the whole WNP
basin and for the three subregions.

b. Relative importance of predictors

A forward stepwise selection scheme can be generally used
to provide an order of the importance of predictors. Here, we
use this scheme to quantify the relative importance of input
variables for TC genesis prediction on intraseasonal time
scales. Individual models are developed for each predictor k,
and then chi-squared statistics are calculated. After including
the predictor with the highest chi-squared statistic in the logis-
tic regression model, the remaining k 2 1 predictors are sepa-
rately added into the model, and new chi-squared statistics
are calculated. We repeat this step until the introduction of
new predictors does not significantly reduce the sum of
squared errors [i.e., under a 95% significance critical value fol-
lowing Cheng et al. (2006)]. In other words, the predictor that
holds a lower p value (,0.05) is likely to be a more meaning-
ful addition to the model. The relative importance of predic-
tors in the stepwise regression scheme is usually consistent
with results of individual predictors regressed on the probabil-
ity of TC genesis in univariate analyses.

Table 1 summarizes the results of the forward selection
scheme at each week lead for the full WNP and for the three
subregions. Over the whole WNP basin, the climatology of
TC genesis is the most important predictor, explaining the
most variability in TC genesis. The MJO (including MJO-PC1
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and MJO-PC2) is found to be the second most important pre-
dictor, especially for forecasts at W1–W5 leads. The QBWO
shows less importance from a 1-week to 4-week lead, indicat-
ing that it provides relatively low predictability for TC genesis
on intraseasonal time scales. ENSO has a limited impact on
the prediction skill over the entire WNP, especially at
W0–W3 leads, likely due to the opposite influences of ENSO
on the WWNP and EWNP subregions. Over the SCS subre-
gion, both ISO (i.e., MJO and QBWO) have a more impor-
tant influence than ENSO. Over the WWNP subregion, the
MJO and QBWO are the most important factors at W0–W1
leads, while ENSO is the second-most important predictor
after the climatology of TC genesis for W2–W7 leads. Over
the EWNP subregion, the inclusion of the MJO and QBWO
has a limited impact on model skill, with ENSO being the sec-
ond-most important predictor after the climatology of TC
genesis at all forecast leads.

Note that the stepwise regression produces the “best”
model by retaining a subset of the predictors and discarding
the rest, resulting in a possibly lower prediction error than the
full model (Thompson 1995; Whittingham et al. 2006;

Smith 2018). However, the “best” model often exhibits high
variance and may be overfit (Henderson and Denison 1989;
Mundry and Nunn 2009). In this study, we just use forward
stepwise regression to provide an order of predictor impor-
tance, but we do not use it to generate forecast probabilities.
All potential predictors are used to develop the logistic
regression model. The relative importance of potential predic-
tors using the forward stepwise regression is found to be
nearly consistent with the skill improvement in BSS. This con-
sistency is useful for physical interpretation of selected predic-
tors. More analyses will be shown in section 5a.

c. Cross-validation

A cross-validation method including both internal valida-
tion and external validation is used to generate hindcast
probabilities and assess model skill. Data for the period
from 2010 to 2019 are used to perform external validation.
Hindcasts are generated for each year from 1979 to 2009
using a two-step cross-validation method. First, one year
(internal validation) is successively left out of the period
from 1979 to 2009. Second, the model is developed with the

TABLE 1. Predictor selection order as determined by the forward selection scheme for the full WNP and for the three subregions,
the South China Sea (SCS), the western WNP (WWNP), and the eastern WNP (EWNP), from 0-week to 7-week lead, using all
available input data from 1979 to 2019. The number 1 denotes the first predictor chosen by the selection scheme, the number 2
denotes the second predictor selected, and so on. An asterisk indicates that the predictor failed the selection test and was not chosen.

Zone Lead Clim MJO-PC1 MJO-PC2 QBWO-PC1 QBWO-PC2 ENSO

WNP W0 1 2 3 4 5 6
W1 1 2 6* 3 5 4
W2 1 3 2 6* 5* 4
W3 1 3 2 5 6* 4
W4 1 2 5 4 6* 3
W5 1 2 5* 6* 4* 3
W6 1 6* 3 5* 4* 2
W7 1 4* 3 6* 5* 2

SCS W0 2 1 4 3 5 6*

W1 2 1 6* 3 4 5*

W2 1 2 3 4 6* 5*

W3 1 3 2 4 5 6*

W4 2 1 3 6* 4 5*

W5 2 1 5* 3* 4* 6*

W6 1 2 3 5* 6* 4*

W7 1 3 2 4* 6* 5*

WWNP W0 1 2 4 3 6 5
W1 1 2 6 3 5 4
W2 1 4 3 6 5 2
W3 1 4 3 5 6* 2
W4 1 3 4 5 6* 2
W5 1 3 5* 4* 6* 2
W6 1 5* 3 4* 6* 2
W7 1 4 3 5* 6* 2

EWNP W0 1 4 6* 5 3 2
W1 1 4 5* 6* 3 2
W2 1 5 3 6* 4 2
W3 1 3 6* 4* 5* 2
W4 1 3 4 5* 6* 2
W5 1 3* 4* 5* 6* 2
W6 1 3* 5* 6* 4* 2
W7 1 3 6* 5* 4* 2
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remaining 30 years (training dataset) to generate hindcasts
for the one year removed (internal validation) and for
2010–19 (external validation). Note that the climatological
probability of cyclogenesis (Clim) is recalculated for each
different training period. These hindcast probabilities are
independently generated from 1 May to 31 October, result-
ing in overlapping weekly probabilities as was done by
Leroy and Wheeler (2008).

Examples of hindcast probabilities for a W1 lead by the
regression model using all potential predictors are shown in
Fig. 6. We examine hindcast probabilities for the strong El
Niño year of 1997 and the strong La Niña year of 1999. As
expected, the hindcast probability is lower than climatology
over the WWNP subregion during the El Niño year and
higher than climatology over the WWNP subregion during
the La Niña year, with the opposite signal over the EWNP
subregion. There is also stronger forecast TC genesis variabil-
ity over the WWNP subregion than the EWNP subregion on
intraseasonal time scales, due to a relatively stronger impact
of ISO over the WWNP subregion. Moreover, we find that
hindcast probabilities consistently follow climatology during
these two ENSO events over the whole WNP basin and the
SCS subregion. These results are largely explained by the
opposing impact of ENSO on WWNP and EWNP TC genesis
and the relatively weak effect of ENSO on TC genesis in the
SCS subregion.

5. Model skill

a. Assessment of logistic model predictability

1) PERFORMANCE OF PREDICTIVE MODEL SKILL USING

THE BRIER SCORE

The prediction skill of the regression model is quantita-
tively assessed by the Brier score. The Brier score is used to
evaluate the accuracy of probabilistic forecasts using

BS � 1
n

∑n

i�1
yi 2 oi( )2, (4)

where n is the number of events, yi represents the forecast
probability of event i, and the term oi is equal to 1 if the event
i occurred and 0 if the event did not occur. The Brier score
can take on any value between 0 and 1 since both the fore-
casts and observations are bounded by 0 and 1. The Brier
score is the mean-square error of the forecast probability, and
thus a lower Brier score means a better prediction and a
larger Brier score means a worse prediction. The Brier skill
score (BSS) is a metric that tells us how well the Brier score
of a forecast model compares to a reference model. The BSS
is calculated as

BSS � 1 2
BS
BSref

, (5)

where BS represents the Brier score value of the hindcasts;
BSref is the Brier score calculated from a reference strategy
that uses a seasonal mean climatology (as shown by the

horizontal lines in Fig. 8, which varies with region only) to
generate hindcast probabilities. Using this reference strategy,
the same probability for each day can be predicted, indicating
the mean seasonal probability of TC genesis in a week.
Higher BSS indicates greater improvement of the hindcast
model relative to the reference model.

In general, BSSs generated with all potential predictors are
higher than with a subset of predictors, while occasionally
higher BSSs are found when a subset of predictors are used.
This usually occurs when the first few predictors have much
higher predictive skill at TC genesis than the remaining pre-
dictors. To represent the skill improvement and the relative
importance of predictors for W0–W7, the hindcast BSSs for
models using all potential predictors and models using a sub-
set of predictors are illustrated in Fig. 7.

Over the WNP basin, when all potential predictors are con-
sidered, the skill of the model using internal validation shows
improvement over the reference model using a mean seasonal
climatology from 16% to 24% during W0–W5. Similar results
can be found for the skill of the model using external valida-
tion in comparison with the reference model using a mean
seasonal climatology (∼17%–24% for W0–W7). These results
suggest that the capability of the L2 regularized regression
model is strong and will likely show robust future skill at
WNP TC genesis prediction on intraseasonal time scales.
When using only the time-varying climatology (i.e., Clim) in
the model using internal or external validation, the model
respectively shows an ∼16% or ∼17% improvement over the
reference model. By comparing BSSs for the model using a
time-varying climatology and ENSO (i.e., Clim1ENSO) and
the model using all predictors (All), we find almost no addi-
tional improvement. This finding is consistent with the limited
impact of ENSO on all WNP TCs due to the opposite impact
of ENSO on WWNP and EWNP TC genesis. The BSS of the
model using climatology and ISO (i.e., Clim1MJO1QBWO)
generates an improvement using an internal validation of
greater than ∼9% for W0 lead decreasing to ∼1% for W4 lead
over the Clim model and the Clim1ENSO model. We find
similar improvement from incorporation of the ISO when
using external validation. These results highlight the impor-
tance of both the TC genesis climatology and ISO for predict-
ability of TC genesis over the WNP basin.

Over the SCS subregion, we find little improvement over
the reference model when using the TC genesis climatology
and either internal or external validation, likely caused by the
low probability of TC genesis over the SCS region. The
Clim1ENSO model adds little additional skill and even
causes some degradation at certain lead times, coinciding with
the limited impact of ENSO on TC genesis over this region.
Additional substantial improvement is obtained by incorpo-
rating ISO (i.e., Clim1MJO1QBWO) at all forecast leads
relative to the Clim model. In summary, ISO are of great
importance for the prediction of TC genesis over the SCS
subregion.

When using internal validation, the Clim model for WWNP
and EWNP show improvements of ∼6% and ∼10% over the
reference model respectively, and ENSO provides an addi-
tional ∼1% improvement over the Clim model alone at all
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forecast leads, both in the WWNP and EWNP subregions.
Inclusion of ISO in the model using internal validation gener-
ates an improvement greater than ∼1%–3% relative to the
Clim model during W0–W4 leads for the WWNP but gener-
ates almost no improvement at W0 and W1 for the EWNP. In

the external validation, ISO provides more skill improvement
than ENSO over the WWNP with limited improvement in the
first two weeks over the EWNP. In summary, the climatology
of TC genesis appears to be the most important predictor for
the WWNP and EWNP. Over the WWNP, ISO provides

FIG. 6. Cross-validated hindcasts (solid curves) and cross-validated climatology (dashed
curves) for W1 of (left) 1997 and (right) 1999 for (top) the full WNP and for the three subregions
(top middle) SCS, (bottom middle) WWNP, and (bottom) EWNP. Gray bars represent a week
in which TC genesis occurred. Each gray bar lasts at least 1 week because of overlapping weekly
probabilities.
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more skill improvement than ENSO. By contrast, additional
skill improvement over the EWNP is mainly from ENSO.

2) ROLE OF REGIONAL DEPENDENCE OF ENSO
AND ISO

The inclusion of ENSO over the WWNP and EWNP gener-
ates considerable skill increases, with ∼1% additional
improvement in the models using both internal and external
validation relative to the Clim model. As mentioned in
section 3b, there are fewer or more TC genesis events over
the WWNP during warm or cold ENSO phases, respectively,
with the opposite relationship occurring in the EWNP. The
analyses of BSSs also support the significant and opposite
impact of ENSO on TC genesis in the WWNP and EWNP.
We further compare the model skill for strong ENSO years
and find that there is a substantial increase in skill by includ-
ing ENSO in the TC genesis prediction model, with ∼3%
improvement over the WWNP and ∼4% improvement over

the EWNP using internal validation (Fig. 8). The relative
importance of potential predictors is almost identical in the
models using either external or internal validation. Addition-
ally, the impact of ENSO on the prediction skill of the regres-
sion models shows an amplification during strong ENSO
events relative to all years (Figs. 7 and 8).

As shown in Figs. 4 and 5, both the MJO and QBWO show
a convective modulation maximum over the WWNP, and
these ISOs have a more important modulation of TC genesis
over this region when compared with either the SCS or
EWNP. The WWNP also shows the most improvement in
model skill by incorporating the ISO. To further clarify the
improvements in skill, we now examine the model skill over
the WWNP for selected strong MJO and QBWO events. We
define strong events to be days when the respective ISOs
have amplitudes greater than 2. During the strongly convec-
tive MJO phases, there is improved skill relative to the Clim
model for the first four weeks except for the W2 lead. In the
models using internal validation, there are significant
improvements at W1 lead with 9% and 7% additional
improvement in the convectively enhanced MJO phases
(phases 4–7) and convectively suppressed MJO phases
(phase 8 and phases 1–3) respectively (Fig. 9), while only a
6% increase is found for the model using all days as shown in
Fig. 7. The stronger modulation of TC genesis during high-
amplitude MJO events is also reflected by a large improve-
ment in skill at W0, although W0 provides limited predictabil-
ity. During active QBWO phases, similar skill improvement is
found at the shortest lead times (Fig. 9). As expected, the
improvement in skill does not exceed W3 for the QBWO, pri-
marily due to a shorter periodicity for the QBWO. In sum-
mary, both the MJO and QBWO can substantially improve
model skill, with an increase in skill extending to three weeks
for the QBWO and to four weeks for the MJO.

3) TYPHOON-STRENGTH BSS

Over the WNP basin, ∼65% of TCs reach typhoon intensity
(.63 kt) at some point during their lifetime. In this section,
we examine the difference in model skill for prediction of TC
genesis for the whole WNP when the maximum lifetime inten-
sity of the TC is a tropical storm (34–63 kt) or a typhoon. As

FIG. 7. Brier skill scores of models using both internal validation
(lines) and external validation (dots) for the full WNP and for the
three subregions SCS, WWNP, and EWNP. The statistical models
are developed with a training dataset from 1979 to 2009 (where
one year is successively left out of the complete record), and a
hindcast for the year left out of the dataset is then produced (i.e.,
hindcasts for internal validation). We separately test over the
period from 2010 to 2019 (i.e., hindcasts of external validation).
Shown are the Brier skill scores for models using all potential pre-
dictors (ALL) and comparison models using only a subset of selec-
tions: intraseasonal oscillations and climatology (Clim 1 MJO 1

QBWO), climatology and ENSO (Clim1 ENSO), and climatology
only (label “Clim”).

FIG. 8. As in Fig. 7, but for strong ENSO years over (left) WWNP
and (right) EWNP.
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shown in Fig. 10, the prediction model for typhoons using the
“Clim” results in 11% and 13% skill improvement over the
reference model using the internal and external validation,
respectively. By contrast, there is less improvement for tropi-
cal storms with skill increases of 4% and 7% in the models
using both internal and external validation. The enhancement
provided by intraseasonal variations spans W0–W3 for
typhoons and extends to W5 for tropical storms. This differ-
ence in skill prediction may be due to the regional depen-
dence of ENSO and ISO. As shown in Fig. 11, most TCs
reaching typhoon strength form over the region from 1208 to
1508E, which coincides with the WWNP and EWNP, while
TCs remaining below typhoon strength primarily form over
the SCS and WWNP. Inclusion of ISO improves the skill at
W0–W4 lead over the WWNP and at W0–W1 lead over the
EWNP, consistent with the distribution of typhoons. Incorpo-
rating ISO in the TC genesis model over the SCS and WWNP
can extend the skill for tropical storms to a 5-week lead. As
was shown earlier, ENSO continues to have a limited impact
on the prediction of TCs over the whole WNP on intraseaso-
nal time scales for both typhoons and tropical storms.

b. Comparison of dynamical and statistical predictions

We next examine the skill in predicting TC genesis over the
WNP between the ECMWF model and the logistic regression
model outlined in this study. For verification purposes, hind-
casts with the statistical model are generated for the same

weeks as are available from the ECWMF model, during the
TC season of WNP defined from 1 May to 31 October. Then,
hindcasts of the dynamical and statistical models are verified
against JTWC TC observations over the WNP.

1) RELIABILITY DIAGRAMS

We use reliability diagrams (Wilks 1995) to examine the
reliability of the dynamical and statistical models. The hind-
cast probabilities and corresponding observations are binned
into 10 equally sized groups and then are averaged for each
group for both hindcast and observed probabilities. As shown
in Fig. 12, we focused on model skill on intraseasonal time

FIG. 10. As in Fig. 7, but for (left) typhoons with maximum wind
speed.63 kt and (right) tropical storms with maximum wind speed
between 34 and 63 kt over the full WNP basin.

FIG. 11. Probability density distribution of TC genesis for (a)
typhoons and (b) tropical storm over the full WNP (shaded areas)
from 1 May to 31 Oct for 1979–2019, along with TC genesis
locations.

FIG. 9. As in Fig. 7, but for days with amplitude .2 during (top)
MJO or (bottom) QBWO (left) active and (right) inactive phases
over WWNP subregion.
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scales (forecast ranges more than 2 weeks) and provide an
example of reliability curves of dynamical and statistical mod-
els for W2–W4 leads. A 10% interval centered on the perfect
forecast (solid diagonal lines) is denoted by the two dashed
diagonal lines. The model is considered reliable when the reli-
ability curve lies in the 10% error interval. When the reliabil-
ity curve lies above the perfect forecast, the model
underestimates the probability for TC genesis. In contrast,
when the reliability curve lies below the perfect forecast, the
model overestimates the probability for TC genesis.

Over the full WNP and the three subregions, TC genesis is
underpredicted in the ECMWF model at W2–W4 leads. As

the forecast lead increases, the ECMWF model shows a trend
to underestimate the low and middle probability groups.
Forecasts produced by the statistical models for W2 are more
reliable, with the reliability curves of the statistical model
closer to the diagonal than the dynamical model. Similarly,
the statistical models are shown to be reliable over the SCS
and WWNP. However, over the full WNP and the EWNP,
the statistical model also underestimates the probability of
TC genesis for the low and middle probability groups at
W3–W4 leads. At longer forecast leads, underprediction of
TC genesis is more common in both the dynamical and statis-
tical models. Overall, the statistical prediction model appears

FIG. 12. Reliability diagrams from a week-2 to a week-4 forecast lead over the full WNP and for the three subre-
gions SCS, WWNP, and EWNP. The green line corresponds to the ECMWF model, and the red line corresponds to
the statistical model using logistic regression. All hindcasts and their corresponding observations are binned into 10
equal-sized groups according to forecast probabilities. Probabilities of each group are averaged and portrayed as a dot.
Dots are connected to form a reliability curve. The horizontal solid lines indicate mean observed probabilities. A per-
fect forecast is shown by the solid diagonal line. The dashed diagonal lines represent a 10% interval centered on a per-
fect forecast.
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more reliable than the ECMWF model during the W2–W4
forecast leads.

2) PROBABILISTIC FORECAST SKILL

Probabilistic forecast skill for the ECMWF model is mea-
sured using the Brier skill score, using the reference forecast
strategy as the statistical model. In addition, the relative oper-
ating characteristic (ROC) score (defined as the area under
the ROC curve; Buizza and Palmer 1998; Mason and Graham
1999), which relates the hit rate to the corresponding false
alarm rate, is also used to assess the skill of the probabilistic
forecasts. The ROC score is equal to 1.0 for a perfect forecast
and 0.5 for a no-skill forecast.

Previous studies found that the ECMWF model had greater
skill in predicting TC occurrence at week 1 than statistical
models (Vitart et al. 2010; Lee et al. 2018, 2020). Here we
compare the dynamical and statistical models forecast skill at
W2–W6 lead times, because it is difficult to eliminate the
effect of preexisting storms that are included the hindcasts of
the W1 lead generated by the ECMWF model. With forecast
lead time increasing, the ECMWF model skill as measured by
both BSSs and ROC scores decreases (Fig. 13). As compared
with the reference model, the ECMWF model displays posi-
tive BSSs at W2–W6 lead over the full WNP and the EWNP,
while the model has negative BSSs except for a week-2 lead
over the SCS and WWNP. The forecast skill of the statistical
model is nearly equal to the ECMWF model at W2 lead, and
the statistical model performs better for longer leads than the
dynamical model, as shown in both Brier skill scores and
ROC scores.

c. Real-time forecast method for the L2 regression model

The regression model developed here can be directly
applied to forecast weekly TC genesis over the WNP using
the ISO indices from the climate model’s forecast of the base
state. More importantly, to ensure that the developed L2
regression model can be used for real-time forecasting, the
real-time ISO indices were extracted by a nonfiltering method

following previous studies (Kikuchi et al. 2012; Hsu et al.
2015; Kiladis et al. 2014). In this study, we adopt the nonfilter-
ing method developed by Hsu et al. (2015) to extract the sig-
nals of the MJO and QBWO. Specifically, the real-time MJO
index can be obtained by the following four steps. First, the
climatological annual cycle is removed from the raw data by
subtracting a climatological 90-day low-pass filtered compo-
nent, based on the 1979–2009 period. Then, a 30-day mean of
the previous 30 days is subtracted from the anomaly field
above to remove lower-frequency variability. We next apply a
5-day running mean to remove higher-frequency variability
for the MJO mode. Last, real-time PCs of the MJO mode can
be obtained by projecting the OLR anomaly fields onto each
mode derived from the intraseasonal time-filtered historical
data. Likewise, the real-time QBWO index can be obtained
by the following four steps. First, the climatological annual
cycle is removed from the raw data by subtracting a climato-
logical 90-day low-pass filtered component, based on the
1979–2009 period. Then, a 10-day mean of the previous
10 days is subtracted from the anomaly field above to remove
lower-frequency variability. We next apply a 3-day running
mean to remove higher-frequency variability for the QBWO
mode. Last, real-time PCs of the QBWO mode can be
obtained by projecting the OLR anomaly fields onto each
mode derived from the intraseasonal time-filtered historical
data. Details on the processing of real-time ISO indices can
be found in Hsu et al. (2015).

An example of real-time monitoring of the MJO index and
the QBWO index is shown in Fig. 14. The real-time monitor-
ing time series of both the MJO and QBWO modes are able
to capture 30–60-day and 10–20-day ISO signals respectively
(Figs. 14a,b), with significant correlations of 0.82 and 0.78 for
PC1 and PC2, respectively, of the MJO and 0.75 and 0.70
respectively for PC1 and PC2 of the QBWO. Similar consis-
tency is also found for extended periods as shown in Table 2.
During May–October of 2010–19, the first two leading PCs
correlation coefficients of MJO and QBWO modes using the
nonfiltering method and the bandpass-filtering method are
∼0.8 and ∼0.7, respectively, which is supported by a statistical
analysis of 31 years of data during 1979–2009.

Moreover, we compare the model skill during 2010–19 for
ISO indices with the bandpass-filtering and nonfiltering meth-
ods. Figure 14c shows the differences of BSS values for the
regression models using climatology and the ISO (i.e.,
Clim1MJO1QBWO). Over the full WNP and its three sub-
regions, the absolute differences in model skill based upon
the ISO signal extraction using these two methods was small,
with no more than a 1.6% difference between these two
approaches. To further demonstrate real-time model skill, we
compare the hindcasts, skill scores, and reliability diagrams
for the whole basin and the three subregions using the real-
time indices and bandpass-filtered indices in the regression
model and found similar results with just slight differences in
amplitude (see Figs. S1–S6 in the online supplemental
material). In summary, the developed L2 regression model
can be used for real-time forecasts of weekly TC genesis over
the WNP on intraseasonal time scales, using a nonfiltering
method to extract the ISO signal.

FIG. 13. (a) Brier skill scores and (b) ROC scores of the
ECMWF model (solid lines) and the statistical model developed
with logistic regression (dashed lines) for the full WNP (red) and
the three subregions SCS (orange), the WWNP (green), and
EWNP (blue).
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6. Summary

In this study, we developed a statistical intraseasonal pre-
diction model for WNP TC genesis using L2 regularized
logistic regression. Since there are substantial regional dif-
ferences in physical controlling mechanisms for TCs, we
divided the whole WNP basin into three subregions (SCS,
WWNP, and EWNP) and developed a statistical prediction
model for each of these subregions on intraseasonal time
scales using the same approach. For the climatology of TC

genesis, two indices representing the MJO, two indices rep-
resenting the QBWO, and the ONI index characterizing
ENSO are chosen as potential predictors for the regression
model in this study. Appropriate lags were introduced for
each predictor according to their availability in real time.
We assessed the relative importance of potential predictors
over the whole WNP basin and for the three subregions for
W0–W7 lead using a forward stepwise selection procedure.
Independent models are developed for the whole WNP and
for the three subregions.

In general, the time-varying climatology of TC genesis
appears to be the most important predictor and shows
increased model skill for predicting weekly TC genesis. By
including ISO, the model skill improvement extends to a
4-week lead over the whole WNP basin. By contrast, ENSO
has a limited impact on the skill improvement for the whole
WNP basin, due to the opposite impact of ENSO on TC gene-
sis between the WWNP and EWNP. In addition to the regional
dependence of TC prediction skill on ENSO, the intraseasonal
prediction of TC genesis also shows a strong regional depen-
dence on ISO. There is a substantial increase in model skill by

FIG. 14. The first two leading PCs of (a) the MJO mode and (b) the QBWO mode during
May–October of 2019. Black lines represent the time series of two PCs obtained using a band-
pass-filtered field, and red lines represent the time series of real-time PCs obtained using a nonfil-
tering method. (c) The difference of BSS values between the nonfiltering method and the band-
pass-filtering method for statistical models using climatology and intraseasonal oscillations (i.e.,
Clim1MJO1QBWO) in May–October of 2010–19. A positive or negative value respectively
means a relatively higher or lower skill of model using real-time ISO indices than the model with
ISO indices using bandpass filtering.

TABLE 2. Correlations of the principal components (PCs) for
the MJO mode and the QBWO mode for real-time monitoring
using a nonfiltering method and a bandpass-filtering method for
the training period (1979–2009) and for the hindcast period
(2010–19).

1979–2009 2010–19

Period PC1 PC2 PC1 PC2

MJO 0.82 0.80 0.78 0.77
QBWO 0.73 0.73 0.72 0.74
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including ENSO over the WWNP and EWNP, while both the
MJO and QBWO improve model skill over the SCS and
WWNP but have limited impact over the EWNP. The regional
dependence of ENSO and ISO can largely explain the differ-
ence in model prediction skill for typhoons and tropical storms
over the whole WNP basin. The skill of the statistical predic-
tion models for TC genesis over the WNP basin on intraseaso-
nal time scales is then compared with the ECMWF dynamical
model. We find comparable reliability and forecast skill scores
to the ECMWF dynamical model at W2, with higher forecast
skill scores fromW3 to W6 weeks.

The prediction skills are assessed in the models using both
internal and external validation, and we find similar skill
between models using both internal (1979–2009) and external
validation (2010–19). Given the potential impact of decadal
climatological differences on model skill (Liu and Chan 2013;
Zhao and Wang 2016, 2019; Murakami et al. 2020), we further
compared the skills of the model with a climatology of
1979–97 and the model with a climatology of 1998–2009. We
found very small differences in skill between the models
developed over the two subperiods for the full WNP and for
the three subregions (results are not shown). These analyses
imply that the statistical intraseasonal prediction model of TC
genesis in this study is not sensitive to the decadal background
state. Last, we have implemented predictions through real-
time MJO and QBWO indices using a nonfiltering method
and found that the statistical model shows skill for real-time
extended TC genesis over the WNP basin. The forecast skill is
also comparable to the MJO and QBWO signals that are
extracted using a bandpass filtering.

While the models presented here are promising, more
potential predictability for intraseasonal prediction should be
considered including other equatorial waves, extratropical tel-
econnection, and SST anomalies in other ocean basins (Yu
et al. 2016; Camargo et al. 2019; Vitart et al. 2019). Key envi-
ronmental factors and large-scale circulation systems affecting
the prediction of TCs on intraseasonal time scales should be
further explored by systematically analyzing and assessing the
prediction skill of TCs on intraseasonal time scales in current
dynamical models. More recently, increasing attention has
been paid to forecasts using machine learning and artificial
intelligence. Matsuoka et al. (2018) successfully detected TC
genesis and its precursors in the WNP using a two-dimen-
sional deep convolutional neural network (CNN) model.
Ham et al. (2019) also used a CNN model to better predict
ENSO events. The application of deep-learning approaches
may yield improved skill at forecasting TC activity on intra-
seasonal time scales.

Acknowledgments. This research was jointly supported by
the National Natural Science Foundation of China (Grants
42192551, 41922033, 41730961, and 42005017). Author
Klotzbach acknowledges a grant from the G. Unger Vetle-
sen Foundation. The numerical calculations in this study
have been done on the supercomputing system at the
Supercomputing Center of Nanjing University of Informa-
tion Science and Technology.

Data availability statement. The data used in this paper are
available online from the following sources: Joint Typhoon
Warning Center (JTWC) best-track data (http://www.metoc.
navy.mil/jtwc/), NOAA Interpolated OLR (https://psl.noaa.
gov/data/gridded/data.interp_OLR.html), HadISST (https://
www.metoffice.gov.uk/hadobs/index.html), and ECMWF
track predictions of S2S reforecasts (https://acquisition.
ecmwf.int/ecpds/data/list/).

REFERENCES

Bakkensen, L. A., D.-S. R. Park, and R. S. R. Sarkar, 2018: Cli-
mate costs of tropical cyclone losses also depend on rain.
Environ. Res. Lett., 13, 074034, https://doi.org/10.1088/1748-
9326/aad056.

Bauer, P., A. J. Thorpe, and G. Brunet, 2015: The quiet revolu-
tion of numerical weather prediction. Nature, 525, 47–55,
https://doi.org/10.1038/nature14956.

Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A.
Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact
of anthropogenic warming on the frequency of intense Atlan-
tic hurricanes. Science, 327, 454–458, https://doi.org/10.1126/
science.1180568.

Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on
ensemble prediction. Mon. Wea. Rev., 126, 2503–2518, https://
doi.org/10.1175/1520-0493(1998)126,2503:IOESOE.2.0.CO;2.

Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific trop-
ical cyclone intensity and ENSO. J. Climate, 18, 2996–3006,
https://doi.org/10.1175/JCLI3457.1.

}}, A. G. Barnston, and S. E. Zebiak, 2005: A statistical assess-
ment of tropical cyclone activity in atmospheric general circu-
lation models. Tellus, 57A, 589–604, https://doi.org/10.3402/
tellusa.v57i4.14705.

}}, K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis
potential index to diagnose ENSO effects on tropical cyclone
genesis. J. Climate, 20, 4819–4834, https://doi.org/10.1175/
JCLI4282.1.

}}, M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the
MJO modulation of tropical cyclogenesis using an empirical
index. J. Atmos. Sci., 66, 3061–3074, https://doi.org/10.1175/
2009JAS3101.1.

}}, and Coauthors, 2019: Tropical cyclone prediction on subsea-
sonal time-scales. Trop. Cyclone Res. Rev., 8, 150–165, https://
doi.org/10.1016/j.tcrr.2019.10.004.

Chan, J. C. L., J. Shi, and K. S. Liu, 2001: Improvements in the
seasonal forecasting of tropical cyclone activity over the west-
ern North Pacific. Wea. Forecasting, 16, 491–498, https://doi.
org/10.1175/1520-0434(2001)016,0491:IITSFO.2.0.CO;2.

Cheng, Q., P. K. Varshney, and M. K. Arora, 2006: Logistic
regression for feature selection and soft classification of
remote sensing data. IEEE Geosci. Remote Sens. Lett., 3,
491–494, https://doi.org/10.1109/LGRS.2006.877949.

Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002:
The Joint Typhoon Warning Center tropical cyclone best-
tracks, 1945–2000. Ref. NRL/MR/754002, 16 pp., http://
www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/
TC_bt_report.html.

Duchon, C. E., 1979: Lanczos filtering in one and two dimensions.
J. Appl. Meteor., 18, 1016–1022, https://doi.org/10.1175/1520-
0450(1979)018,1016:LFIOAT.2.0.CO;2.

Elsberry, R. L., M. S. Jordan, and F. Vitart, 2010: Predictability of
tropical cyclone events on intraseasonal timescales with the

Z HAO E T A L . 247515 APRIL 2022

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 09/20/23 04:24 AM UTC

http://www.metoc.navy.mil/jtwc/
http://www.metoc.navy.mil/jtwc/
https://psl.noaa.gov/data/gridded/data.interp_OLR.html
https://psl.noaa.gov/data/gridded/data.interp_OLR.html
https://www.metoffice.gov.uk/hadobs/index.html
https://www.metoffice.gov.uk/hadobs/index.html
https://acquisition.ecmwf.int/ecpds/data/list/
https://acquisition.ecmwf.int/ecpds/data/list/
https://doi.org/10.1088/1748-9326/aad056
https://doi.org/10.1088/1748-9326/aad056
https://doi.org/10.1038/nature14956
https://doi.org/10.1126/science.1180568
https://doi.org/10.1126/science.1180568
https://doi.org/10.1175/1520-0493(1998)126<2503:IOESOE>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<2503:IOESOE>2.0.CO;2
https://doi.org/10.1175/JCLI3457.1
https://doi.org/10.3402/tellusa.v57i4.14705
https://doi.org/10.3402/tellusa.v57i4.14705
https://doi.org/10.1175/JCLI4282.1
https://doi.org/10.1175/JCLI4282.1
https://doi.org/10.1175/2009JAS3101.1
https://doi.org/10.1175/2009JAS3101.1
https://doi.org/10.1016/j.tcrr.2019.10.004
https://doi.org/10.1016/j.tcrr.2019.10.004
https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2
https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2
https://doi.org/10.1109/LGRS.2006.877949
http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html
http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html
http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html
https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2


ECMWF monthly forecast model. Asia-Pac. J. Atmos. Sci.,
46, 135–153, https://doi.org/10.1007/s13143-010-0013-4.

}}, H.-C. Tsai, and M. S. Jordan, 2014: Extended-range fore-
casts of Atlantic tropical cyclone events during 2012 using the
ECMWF 32-day ensemble predictions. Wea. Forecasting, 29,
271–288, https://doi.org/10.1175/WAF-D-13-00104.1.

Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activ-
ity and global climate. Preprints, 26th Conf. on Hurricanes
and Tropical Meteorology, Miami, FL, Amer. Meteor.
Soc., 240–241.

Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms
for the association of El Niño and West African rainfall with
Atlantic major hurricane activity. J. Climate, 9, 1169–1187,
https://doi.org/10.1175/1520-0442(1996)009,1169:PMFTAO.2.
0.CO;2.

Gray, W. M., 1979: Hurricanes: Their formation, structure and
likely role in the general circulation. Meteorology over the
Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological
Society, 155–218.

}}, 1984: Atlantic seasonal hurricane frequency. Part II: Fore-
casting its variability. Mon. Wea. Rev., 112, 1669–1683, https://
doi.org/10.1175/1520-0493(1984)112,1669:ASHFPI.2.0.CO;2.

}}, C. W. Landsea, P. W. Mielke, and K. J. Berry, 1992: Pre-
dicting Atlantic seasonal hurricane activity 6–11 months in
advance. Wea. Forecasting, 7, 440–455, https://doi.org/10.1175/
1520-0434(1992)007,0440:PASHAM.2.0.CO;2.

Gregory, P., F. Vitart, R. Rivett, A. Brown, and Y. Kuleshov,
2020: Subseasonal forecasts of tropical cyclones in the
Southern Hemisphere using a dynamical multimodel
ensemble. Wea. Forecasting, 35, 1817–1829, https://doi.org/
10.1175/WAF-D-20-0050.1.

Ham, Y.-G., J.-H. Kim, and J.-J. Luo, 2019: Deep learning for
multi-year ENSO forecasts. Nature, 573, 568–572, https://doi.
org/10.1038/s41586-019-1559-7.

Han, X., H. Zhao, X. Li, G. B. Raga, C. Wang, and Q. Li, 2019:
Modulation of boreal extended summer tropical cyclogenesis
over the northwest Pacific by the quasi-biweekly oscillation
under different El Niño–Southern Oscillation phases. Int. J.
Climatol., 40, 858–873, https://doi.org/10.1002/joc.6244.

Hansen, K. A., S. J. Majumdar, and B. P. Kirtman, 2020: Identify-
ing subseasonal variability relevant to Atlantic tropical
cyclone activity. Wea. Forecasting, 35, 2001–2024, https://doi.
org/10.1175/WAF-D-19-0260.1.

Henderson, D. A., and D. R. Denison, 1989: Stepwise regression in
social and psychological research. Psychol. Rep., 64, 251–257,
https://doi.org/10.2466/pr0.1989.64.1.251.

Hoerl, A. E., and R. W. Kennard, 1970: Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics, 12,
55–67, https://doi.org/10.1080/00401706.1970.10488634.

Hsu, P.-C., T. Li, L. You, J. Gao, and H.-L. Ren, 2015: A spatial–
temporal projection model for 10–30 day rainfall forecast in
South China. Climate Dyn., 44, 1227–1244, https://doi.org/10.
1007/s00382-014-2215-4.

Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropi-
cal cyclones over the eastern Pacific by the intraseasonal vari-
ability simulated in an AGCM. J. Climate, 25, 6524–6538,
https://doi.org/10.1175/JCLI-D-11-00531.1.

}}, B. Xiang, M. Zhao, T. Li, S. J. Lin, Z. Wang, and J. H.
Chen, 2018: Intraseasonal tropical cyclogenesis prediction in
a global coupled model system. J. Climate, 31, 6209–6227,
https://doi.org/10.1175/JCLI-D-17-0454.1.

}}, A. Adames, D. Kim, E. Maloney, H. Lin, H. Kim, C.
Zhang, C. DeMott, and N. Klingaman, 2020: Fifty years of

research on the Madden–Julian oscillation: Recent progress,
challenges, and perspectives. J. Geophys. Res. Atmos., 125,
e2019JD030911, https://doi.org/10.1029/2019JD030911.

Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and
air–sea interaction in the boreal summer intraseasonal
oscillation. J. Climate, 14, 2923–2942, https://doi.org/10.
1175/1520-0442(2001)014,2923:EWAASI.2.0.CO;2.

Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal represen-
tation of the tropical intraseasonal oscillation. Climate Dyn.,
38, 1989–2000, https://doi.org/10.1007/s00382-011-1159-1.

Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich,
K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A
comparison of OLR and circulation-based indices for track-
ing the MJO. Mon. Wea. Rev., 142, 1697–1715, https://doi.org/
10.1175/MWR-D-13-00301.1.

Kim, H., F. Vitart, and D. E. Waliser, 2018: Prediction of the Mad-
den–Julian oscillation: A review. J. Climate, 31, 9425–9443,
https://doi.org/10.1175/JCLI-D-18-0210.1.

}}, M. A. Janiga, and K. Pegion, 2019: MJO propagation pro-
cesses and mean biases in the SubX and S2S reforecasts.
J. Geophys. Res. Atmos., 124, 9314–9331, https://doi.org/10.
1029/2019JD031139.

Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008:
Systematic variation of summertime tropical cyclone activity
in the western North Pacific in relation to the Madden–Julian
oscillation. J. Climate, 21, 1171–1191, https://doi.org/10.1175/
2007JCLI1493.1.

Kleinen, J., 2007: Historical perspectives on typhoons and tropical
storms in the natural and socio-economic system of Nam
Dinh (Vietnam). J. Asian Earth Sci., 29, 523–531, https://doi.
org/10.1016/j.jseaes.2006.05.012.

Klotzbach, P. J., and E. C. J. Oliver, 2015: Variations in global
tropical cyclone activity and the Madden–Julian oscillation
since the midtwentieth century. Geophys. Res. Lett., 42,
4199–4207, https://doi.org/10.1002/2015GL063966.

}}, S. G. Bowen, R. Pielke, and M. Bell, 2018: Continental
U.S. hurricane landfall frequency and associated damage:
Observations and future risks. Bull. Amer. Meteor. Soc., 99,
1359–1376, https://doi.org/10.1175/BAMS-D-17-0184.1.

}}, and Coauthors, 2019: Seasonal tropical cyclone forecasting.
Trop. Cyclone Res. Rev., 8, 134–149, https://doi.org/10.1016/j.
tcrr.2019.10.003.

}}, L.-P. Caron, and M. M. Bell, 2020: A statistical/dynamical
model for North Atlantic seasonal hurricane prediction. Geo-
phys. Res. Lett., 47, e2020GL089357, https://doi.org/10.1029/
2020GL089357.

Lander, M. A., 1994: An exploratory analysis of the relationship
between tropical storm formation in the western North
Pacific and ENSO. Mon. Wea. Rev., 122, 636–651, https://doi.
org/10.1175/1520-0493(1994)122,0636:AEAOTR.2.0.CO;2.

Lee, C. Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tip-
pett, 2018: Subseasonal tropical cyclone genesis prediction
and MJO in the S2S dataset. Wea. Forecasting, 33, 967–988,
https://doi.org/10.1175/WAF-D-17-0165.1.

}}, }}, }}, }}, J. Camp, S. Wang, M. K. Tippett, and Q.
Yang, 2020: Subseasonal predictions of tropical cyclone
occurrence and ACE in the S2S dataset. Wea. Forecasting,
35, 921–938, https://doi.org/10.1175/WAF-D-19-0217.1.

Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-
S. Kang, 2013: Real-time multivariate indices for the boreal
summer intraseasonal oscillation over the Asian summer
monsoon region. Climate Dyn., 40, 493–509, https://doi.org/
10.1007/s00382-012-1544-4.

J OURNAL OF CL IMATE VOLUME 352476

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 09/20/23 04:24 AM UTC

https://doi.org/10.1007/s13143-010-0013-4
https://doi.org/10.1175/WAF-D-13-00104.1
https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2
https://doi.org/10.1175/1520-0434(1992)007<0440:PASHAM>2.0.CO;2
https://doi.org/10.1175/1520-0434(1992)007<0440:PASHAM>2.0.CO;2
https://doi.org/10.1175/WAF-D-20-0050.1
https://doi.org/10.1175/WAF-D-20-0050.1
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1002/joc.6244
https://doi.org/10.1175/WAF-D-19-0260.1
https://doi.org/10.1175/WAF-D-19-0260.1
https://doi.org/10.2466/pr0.1989.64.1.251
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1007/s00382-014-2215-4
https://doi.org/10.1007/s00382-014-2215-4
https://doi.org/10.1175/JCLI-D-11-00531.1
https://doi.org/10.1175/JCLI-D-17-0454.1
https://doi.org/10.1029/2019JD030911
https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
https://doi.org/10.1007/s00382-011-1159-1
https://doi.org/10.1175/MWR-D-13-00301.1
https://doi.org/10.1175/MWR-D-13-00301.1
https://doi.org/10.1175/JCLI-D-18-0210.1
https://doi.org/10.1029/2019JD031139
https://doi.org/10.1029/2019JD031139
https://doi.org/10.1175/2007JCLI1493.1
https://doi.org/10.1175/2007JCLI1493.1
https://doi.org/10.1016/j.jseaes.2006.05.012
https://doi.org/10.1016/j.jseaes.2006.05.012
https://doi.org/10.1002/2015GL063966
https://doi.org/10.1175/BAMS-D-17-0184.1
https://doi.org/10.1016/j.tcrr.2019.10.003
https://doi.org/10.1016/j.tcrr.2019.10.003
https://doi.org/10.1029/2020GL089357
https://doi.org/10.1029/2020GL089357
https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
https://doi.org/10.1175/WAF-D-17-0165.1
https://doi.org/10.1175/WAF-D-19-0217.1
https://doi.org/10.1007/s00382-012-1544-4
https://doi.org/10.1007/s00382-012-1544-4


Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of
weekly tropical cyclone activity in the Southern Hemi-
sphere. Mon. Wea. Rev., 136, 3637–3654, https://doi.org/10.
1175/2008MWR2426.1.

Li, C.-Y., 1996: Quasi-two weeks oscillation in the tropical atmo-
sphere. Theor. Appl. Climatol., 55, 121–127, https://doi.org/10.
1007/BF00864707.

Li, R. C. Y., and W. Zhou, 2013a: Modulation of western North
Pacific tropical cyclone activity by the ISO. Part I: Genesis
and intensity. J. Climate, 26, 2904–2918, https://doi.org/10.
1175/JCLI-D-12-00210.1.

}}, and }}, 2013b: Modulation of western North Pacific tropi-
cal cyclone activity by the ISO. Part II: Tracks and landfalls.
J. Climate, 26, 2919–2930, https://doi.org/10.1175/JCLI-D-12-
00211.1.

}}, }}, J. Chan, and P. Huang, 2012: Asymmetric modulation
of western North Pacific cyclogenesis by the Madden–Julian
oscillation under ENSO conditions. J. Climate, 25, 5374–5385,
https://doi.org/10.1175/JCLI-D-11-00337.1.

Liebmann, B., and C. A. Smith, 1996: Description of a complete
(interpolated) outgoing longwave radiation dataset. Bull.
Amer. Meteor. Soc., 77, 1275–1277, https://doi.org/10.1175/
1520-0477-77.6.1274.

Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the
subseasonal-to-seasonal prediction models. J. Climate, 31,
4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1.

Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western
North Pacific tropical cyclone activity in 1998–2011. J. Climate,
26, 2614–2630, https://doi.org/10.1175/JCLI-D-12-00053.1.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50
day oscillation in the zonal wind in the tropical Pacific.
J. Atmos. Sci., 28, 702–708, https://doi.org/10.1175/1520-
0469(1971)028,0702:DOADOI.2.0.CO;2.

Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurri-
cane activity in the Gulf of Mexico by the Madden–Julian
oscillation. Science, 287, 2002–2004, https://doi.org/10.1126/
science.287.5460.2002.

Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the
South China Sea summer monsoon. J. Climate, 18, 2388–2402,
https://doi.org/10.1175/JCLI3395.1.

Mason, S. J., and N. E. Graham, 1999: Conditional probabilities
relative operating characteristics, and relative operating lev-
els. Wea. Forecasting, 14, 713–725, https://doi.org/10.1175/
1520-0434(1999)014,0713:CPROCA.2.0.CO;2.

Matsuoka, D., M. Nakano, D. Sugiyama, and S. Uchida, 2018:
Deep learning approach for detecting tropical cyclones and
their precursors in the simulation by a cloud-resolving global
nonhydrostatic atmospheric model. Prog. Earth Planet. Sci.,
5, 80, https://doi.org/10.1186/s40645-018-0245-y.

McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical
cyclone formation. Part II: Comparison of non-developing ver-
sus developing systems. J. Atmos. Sci., 38, 1132–1151, https://
doi.org/10.1175/1520-0469(1981)038,1132:OAOTCF.2.0.CO;2.

Merryfield, W. J., and Coauthors, 2020: Current and emerging
developments in subseasonal to decadal prediction. Bull.
Amer. Meteor. Soc., 101, E869–E896, https://doi.org/10.1175/
BAMS-D-19-0037.1.

Mundry, R., and C. L. Nunn, 2009: Stepwise model fitting and sta-
tistical inference: Turning noise into signal pollution. Amer.
Nat., 173, 119–123, https://doi.org/10.1086/593303.

Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Xiang,
and P. C. Hsu, 2020: Detected climatic change in global

distribution of tropical cyclones. Proc. Natl. Acad. Sci. USA,
117, 10706–10 714, https://doi.org/10.1073/pnas.1922500117.

Murakami, M., 1984: Analysis of deep convective activity over
the western Pacific and Southeast Asia. Part II: Seasonal
and intraseasonal variations during northern summer.
J. Meteor. Soc. Japan, 62, 88–108, https://doi.org/10.2151/
jmsj1965.62.1_88.

Ng, A. Y., 2004: Feature selection, L1 vs. L2 regularization, and
rotational invariance. Proc. 21st Int. Conf. on Machine Learn-
ing, Banff, AB, Canada, ACM, https://doi.org/10.1145/
1015330.1015435.

Ogutu, J. O., T. Schulz-Streeck, and H. P. Piepho, 2012: Genomic
selection using regularized linear regression models: Ridge
regression, lasso, elastic net and their extensions. BMC Proc.,
6, S10, https://doi.org/10.1186/1753-6561-6-S2-S10.

Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan,
and P. Chang, 2018: The influence of ENSO flavors on west-
ern North Pacific tropical cyclone activity. J. Climate, 31,
5395–5416, https://doi.org/10.1175/JCLI-D-17-0678.1.

Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropi-
cal sea surface temperature and surface wind fields associated
with the Southern Oscillation/El Niño. Mon. Wea. Rev.,
110, 354–384, https://doi.org/10.1175/1520-0493(1982)110,0354:
VITSST.2.0.CO;2.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland,
L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan,
2003: Global analyses of sea surface temperature, sea ice,
and night marine air temperature since the late nineteenth
century. J. Geophys. Res., 108, 4407, https://doi.org/10.
1029/2002JD002670.

Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of hur-
ricane activity reaching the coast of the United States.
Nature, 434, 1005–1008, https://doi.org/10.1038/nature03454.

Serra, Y. L., X. Jiang, B. Tian, J. Astua, E. D. Maloney, and G. N.
Kiladis, 2014: Tropical intra-seasonal oscillations and synoptic
variability. Annu. Rev. Environ. Resour., 39, 189–215, https://
doi.org/10.1146/annurev-environ-020413-134219.

Slade, S. A., and E. D. Maloney, 2013: An intraseasonal predic-
tion model of Atlantic and East Pacific tropical cyclone gene-
sis. Mon. Wea. Rev., 141, 1925–1942, https://doi.org/10.1175/
MWR-D-12-00268.1.

Smith, G., 2018: Step away from stepwise. J. Big Data, 5, 32,
https://doi.org/10.1186/s40537-018-0143-6.

Thompson, B., 1995: Stepwise regression and stepwise discrimi-
nant analysis need not apply here: A guidelines editorial.
Educ. Psychol. Meas., 55, 525–534, https://doi.org/10.1177/
0013164495055004001.

Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A.
Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynami-
cal predictions of seasonal North Atlantic hurricane activity.
Mon. Wea. Rev., 139, 1070–1082, https://doi.org/10.1175/
2010MWR3499.1.

}}, and Coauthors, 2019: Tropical cyclone sensitivities to CO2

doubling: Roles of atmospheric resolution, synoptic variability
and background climate changes. Climate Dyn., 53, 5999–6033,
https://doi.org/10.1007/s00382-019-04913-y.

Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill
scores. Quart. J. Roy. Meteor. Soc., 140, 1889–1899, https://
doi.org/10.1002/qj.2256.

}}, and T. N. Stockdale, 2001: Seasonal forecasting of
tropical storms using coupled GCM integrations. Mon.
Wea. Rev., 129, 2521–2537, https://doi.org/10.1175/1520-
0493(2001)129,2521:SFOTSU.2.0.CO;2.

Z HAO E T A L . 247715 APRIL 2022

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 09/20/23 04:24 AM UTC

https://doi.org/10.1175/2008MWR2426.1
https://doi.org/10.1175/2008MWR2426.1
https://doi.org/10.1007/BF00864707
https://doi.org/10.1007/BF00864707
https://doi.org/10.1175/JCLI-D-12-00210.1
https://doi.org/10.1175/JCLI-D-12-00210.1
https://doi.org/10.1175/JCLI-D-12-00211.1
https://doi.org/10.1175/JCLI-D-12-00211.1
https://doi.org/10.1175/JCLI-D-11-00337.1
https://doi.org/10.1175/1520-0477-77.6.1274
https://doi.org/10.1175/1520-0477-77.6.1274
https://doi.org/10.1175/JCLI-D-17-0545.1
https://doi.org/10.1175/JCLI-D-12-00053.1
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
https://doi.org/10.1126/science.287.5460.2002
https://doi.org/10.1126/science.287.5460.2002
https://doi.org/10.1175/JCLI3395.1
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.1186/s40645-018-0245-y
https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
https://doi.org/10.1175/BAMS-D-19-0037.1
https://doi.org/10.1175/BAMS-D-19-0037.1
https://doi.org/10.1086/593303
https://doi.org/10.1073/pnas.1922500117
https://doi.org/10.2151/jmsj1965.62.1_88
https://doi.org/10.2151/jmsj1965.62.1_88
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1186/1753-6561-6-S2-S10
https://doi.org/10.1175/JCLI-D-17-0678.1
https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1038/nature03454
https://doi.org/10.1146/annurev-environ-020413-134219
https://doi.org/10.1146/annurev-environ-020413-134219
https://doi.org/10.1175/MWR-D-12-00268.1
https://doi.org/10.1175/MWR-D-12-00268.1
https://doi.org/10.1186/s40537-018-0143-6
https://doi.org/10.1177/0013164495055004001
https://doi.org/10.1177/0013164495055004001
https://doi.org/10.1175/2010MWR3499.1
https://doi.org/10.1175/2010MWR3499.1
https://doi.org/10.1007/s00382-019-04913-y
https://doi.org/10.1002/qj.2256
https://doi.org/10.1002/qj.2256
https://doi.org/10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2


}}, and A. W. Robertson, 2018: The sub-seasonal to seasonal
prediction project (S2S) and the prediction of extreme
events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/
s41612-018-0013-0.

}}, A. Leroy, and M. C. Wheeler, 2010: A comparison of
dynamical and statistical predictions of weekly tropical
cyclone activity in the Southern Hemisphere. Mon. Wea.
Rev., 138, 3671–3682, https://doi.org/10.1175/2010MWR3343.1.

}}, and Coauthors, 2017: The subseasonal to seasonal (S2S)
prediction project database. Bull. Amer. Meteor. Soc., 98,
163–173, https://doi.org/10.1175/BAMS-D-16-0017.1.

}}, and Coauthors, 2019: Sub-seasonal to Seasonal Prediction of
Weather Extremes. Elsevier, 365–386, https://doi.org/10.1016/
B978-0-12-811714-9.00017-6.

Wang, B., and J. C. L. Chan, 2002: How strong ENSO events
affect tropical storm activity over the western North
Pacific. J. Climate, 15, 1643–1658, https://doi.org/10.1175/
1520-0442(2002)015,1643:HSEEAT.2.0.CO;2.

}}, R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection:
How does ENSO affect East Asian climate? J. Climate, 13,
1517–1536, https://doi.org/10.1175/1520-0442(2000)013,1517:
PEATHD.2.0.CO;2.

Wang, G., J. Su, Y. Ding, and D. Chen, 2007: Tropical cyclone
genesis over the South China Sea. J. Mar. Syst., 68, 318–326,
https://doi.org/10.1016/j.jmarsys.2006.12.002.

Wang, S., A. H. Sobel, M. K. Tippett, and F. Vitart, 2019: Predic-
tion and predictability of tropical intraseasonal convection:
Seasonal dependence and the Maritime Continent prediction
barrier. Climate Dyn., 52, 6015–6031, https://doi.org/10.1007/
s00382-018-4492-9.

Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time
multivariate MJO index: Development of an index for monitor-
ing and prediction. Mon. Wea. Rev., 132, 1917–1932, https://doi.
org/10.1175/1520-0493(2004)132,1917:AARMMI.2.0.CO;2.

Whittingham, M. J., P. A. Stephens, R. B. Bradbury, and R. P.
Freckleton, 2006: Why do we still use stepwise modelling in
ecology and behavior? J. Anim. Ecol., 75, 1182–1189, https://
doi.org/10.1111/j.1365-2656.2006.01141.x.

Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences:
An Introduction. Academic Press, 464 pp.

Yu, J., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North
Atlantic SST on tropical cyclone genesis in the western North
Pacific. Climate Dyn., 46, 865–877, https://doi.org/10.1007/
s00382-015-2618-x.

Zhang, G., H. Murakami, T. R. Knutson, R. Mizuta, and K. Yosh-
ida, 2020: Tropical cyclone motion in a changing climate. Sci.
Adv., 6, eaaz7610, https://doi.org/10.1126/sciadv.aaz7610.

Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in
China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489–495,
https://doi.org/10.1175/2008BAMS2631.1.

Zhao, H., and C. Wang, 2016: Interdecadal modulation on the
relationship between ENSO and typhoon activity during the
late season in the western North Pacific. Climate Dyn., 47,
315–328, https://doi.org/10.1007/s00382-015-2837-1.

}}, and }}, 2019: On the relationship between ENSO and
tropical cyclones in the western North Pacific during the
boreal summer. Climate Dyn., 52, 275–288, https://doi.org/10.
1007/s00382-018-4136-0.

}}, L. Wu, and W. Zhou, 2010: Assessing the influence of the
ENSO on tropical cyclone prevailing tracks in the western
North Pacific. Adv. Atmos. Sci., 27, 1361–1371, https://doi.org/
10.1007/s00376-010-9161-9.

}}, }}, and }}, 2011: Interannual changes of tropical
cyclone intensity in the western North Pacific. J. Meteor. Soc.
Japan, 89, 243–253, https://doi.org/10.2151/jmsj.2011-305.

}}, X. Jiang, and L. Wu, 2015a: Modulation of Northwest
Pacific tropical cyclone genesis by the intraseasonal variabil-
ity. J. Meteor. Soc. Japan, 93, 81–97, https://doi.org/10.2151/
jmsj.2015-006.

}}, R. Yoshida, and G. B. Raga, 2015b: Impact of the Mad-
den–Julian oscillation on western North Pacific tropical cyclo-
genesis associated with large-scale patterns. J. Appl. Meteor.
Climatol., 54, 1413–1429, https://doi.org/10.1175/JAMC-D-14-
0254.1.

}}, C. Wang, and R. Yoshida, 2016: Modulation of tropical
cyclogenesis in the western North Pacific by the quasi-
biweekly oscillation. Adv. Atmos. Sci., 33, 1361–1375, https://
doi.org/10.1007/s00376-016-5267-z.

Zhou, F., and Coauthors, 2020: Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan,
China: A retrospective cohort study. Lancet, 395, 1054–1062,
https://doi.org/10.1016/S0140-6736(20)30566-3.

Zhou, H., P. Hsu, and Y. Qian, 2018: Close linkage between
quasi-biweekly oscillation and tropical cyclone intensification
over the western North Pacific. Atmos. Sci. Lett., 19, e826,
https://doi.org/10.1002/asl.826.

Zhu, Z., T. Li, L. Bai, and J. Gao, 2017: Extended-range forecast
for the temporal distribution of clustering tropical cyclogene-
sis over the western North Pacific. Theor. Appl. Climatol.,
130, 865–877, https://doi.org/10.1007/s00704-016-1925-4.

J OURNAL OF CL IMATE VOLUME 352478

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 09/20/23 04:24 AM UTC

https://doi.org/10.1038/s41612-018-0013-0
https://doi.org/10.1038/s41612-018-0013-0
https://doi.org/10.1175/2010MWR3343.1
https://doi.org/10.1175/BAMS-D-16-0017.1
https://doi.org/10.1016/B978-0-12-811714-9.00017-6
https://doi.org/10.1016/B978-0-12-811714-9.00017-6
https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
https://doi.org/10.1016/j.jmarsys.2006.12.002
https://doi.org/10.1007/s00382-018-4492-9
https://doi.org/10.1007/s00382-018-4492-9
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1111/j.1365-2656.2006.01141.x
https://doi.org/10.1111/j.1365-2656.2006.01141.x
https://doi.org/10.1007/s00382-015-2618-x
https://doi.org/10.1007/s00382-015-2618-x
https://doi.org/10.1126/sciadv.aaz7610
https://doi.org/10.1175/2008BAMS2631.1
https://doi.org/10.1007/s00382-015-2837-1
https://doi.org/10.1007/s00382-018-4136-0
https://doi.org/10.1007/s00382-018-4136-0
https://doi.org/10.1007/s00376-010-9161-9
https://doi.org/10.1007/s00376-010-9161-9
https://doi.org/10.2151/jmsj.2011-305
https://doi.org/10.2151/jmsj.2015-006
https://doi.org/10.2151/jmsj.2015-006
https://doi.org/10.1175/JAMC-D-14-0254.1
https://doi.org/10.1175/JAMC-D-14-0254.1
https://doi.org/10.1007/s00376-016-5267-z
https://doi.org/10.1007/s00376-016-5267-z
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1002/asl.826
https://doi.org/10.1007/s00704-016-1925-4

