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ABSTRACT: The Madden–Julian oscillation (MJO) provides an important source of subseasonal-to-seasonal (S2S)

predictability. Improved MJO prediction can be beneficial to S2S prediction of global climate and associated weather

extremes. In this study, hindcasts based on an atmosphere–ocean coupled general circulationmodel (CGCM) are compared

to those based on atmosphere general circulationmodels (AGCMs) to investigate influences of air–sea interactions onMJO

prediction. Our results suggest that MJO prediction skill can be extended about 1 week longer in the CGCM hindcasts than

AGCM-only experiments, particularly for boreal winter predictions. Further analysis suggests that improved MJO pre-

diction in the CGCM is closely associated with improved representation of moistening processes. Compared to the AGCM

experiments, the CGCMbetter predicts the boundary layer moisture preconditioning to the east of MJO convection, which

is generally considered crucial for triggering MJO deep convection. Meanwhile, the widely extended east–west asymmetric

structure in free-tropospheric moisture tendency anomalies relative to the MJO convection center as seen in the obser-

vations is also well predicted in the CGCM. Improved prediction ofMJOmoisture processes in CGCM is closely associated

with better representation of the zonal scale of MJO circulation and stronger Kelvin waves to the east of MJO convection,

both of which have been recently suggested to be conducive to MJO eastward propagation. The above improvements by

including air–sea coupling could be largely attributed to the realistic MJO-induced SST fluctuations through the

convection–SST feedback. This study confirms a critical role of atmosphere–ocean coupling for the improvement of MJO

prediction.
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1. Introduction

It is well known that weather forecasting (i.e., the forecast

of weather regimes from a few hours up to about 2 weeks) and

climate prediction have been remarkably improved over the

last decades. However, the extended-range forecast as the

gap between the weather forecast and climate prediction is

still far from satisfactory. It remains a great challenge to fill

this gap in order to perform a reliable, skillful, and seamless

forecast of the weather–climate continuum (e.g., Palmer et al.

2008; Merryfield et al. 2020). Recently, subseasonal predic-

tion, as the bridge to fill this gap, has gained more and more at-

tention. To improve the operational predictions and social

applications, the Subseasonal to Seasonal (S2S) Prediction re-

search project has been launchedby theWorldWeatherResearch

Programme/World Climate Research Programme (Vitart et al.

2017) toward the development of weather-to-climate seamless

forecasts.

The Madden–Julian oscillation (MJO), which is recognized

as one of the primary sources of subseasonal prediction, has

been intensively studied (e.g., Waliser et al. 2003; Zhang

2005, 2013; Zhang et al. 2020; Pegion and Sardeshmukh 2011;

Jiang et al. 2020a). The MJO is a dominant mode of sub-

seasonal variability in the tropics with a period of 30–60 days

and characterized as an eastward propagation of large-scale

convective features with a speed of;5m s21 (e.g., Madden and

Julian 1971, 1972). Given its tremendous influences on global

climate and weather systems (e.g., Cassou 2008; Stan et al.

2017), many climate prediction centers have been dedicated to

improving the prediction of MJO. In recent decades, MJO

prediction has been improved with the advances of theoretical

understanding, observations, model development, and com-

puting technology. Most models’ hindcasts participating in the

S2S project show a good MJO prediction skill at lead times of

up to about 20 days, among which the multimember ensemble

mean of ECMWF model can even skillfully predict MJO ap-

proximately 30 days in advance (e.g., Vitart 2017; Lim et al.

2018). However, considering the intrinsic potential MJO pre-

dictability of 4–6 weeks as suggested by recent studies (e.g.,

Neena et al. 2014; Kim et al. 2018), there is still room for im-

provement of MJO prediction skill.

The MJO prediction skill can be affected by a variety of

factors, including biases in model physics, the initialization

scheme, the phase and amplitude of the MJO (e.g., Lin et al.

2008; Rashid et al. 2011; Fu et al. 2011; Liu et al. 2017; Kim et al.

2018). For instance, Wang et al. (2014) showed that MJO

prediction skill at a longer lead time is relatively higher during

target phases 3 and 7, whereas it becomes lower during target

phases 8, 1, and 2. In addition, MJO prediction skill largely

depends on the season and MJO amplitude in most of opera-

tional forecast systems. For instance, it is shown that the
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prediction skill is higher in boreal winter than that in summer

(e.g., Wang et al. 2014), and when strong MJO events are

present in the model initial condition (e.g., Lin et al. 2008;

Wang et al. 2014; Xiang et al. 2015). In addition, the behavior

and prediction of the MJO are also modulated by air–sea in-

teractions (Fu et al. 2013; Shelly et al. 2014; Green et al. 2017;

Kim et al. 2018), atmosphere mean states (DeMott et al. 2015;

Gonzalez and Jiang 2017; Kim 2017; Lim et al. 2018), and

seasonal–interannual climate variability such as the Indian

Ocean dipole (IOD; Liu et al. 2017), El Niño–Southern
Oscillation (ENSO; Wang et al. 2017a; Wei and Ren 2019),

and quasibiennial oscillation (QBO; Marshall et al. 2017; Son

et al. 2017; Lim et al. 2019). However, some debates still exist

with regard to the significance of the modulation by these cli-

mate modes (Liu et al. 2017; Kim et al. 2019).

Recent studies have emphasized the importance of complex

feedbacks between the atmosphere and ocean in affecting the

MJO (e.g., DeMott et al. 2015; Jiang et al. 2020a). For instance,

convection and wind anomalies related to the MJO could in-

duce anomalous solar radiation, evaporative cooling, and

momentum flux that influence the upper ocean. The generated

ocean surface perturbations in turn can force the atmosphere.

Some studies have shown that the effect of direct heat flux

forcing caused by SST anomalies is very limited (DeMott et al.

2016). In contrast, several indirect feedbacks from the upper

ocean may play active roles in regulating MJO activity (e.g.,

Wang and Xie 1998; Marshall et al. 2008; Liu and Wang 2013;

DeMott et al. 2015, 2016, 2019). For instance, the air–sea in-

teraction is considered to have a role in maintaining the MJO

over the warm pool by destabilizing atmospheric moist Kelvin

wave (e.g., Wang and Xie 1998). From the perspective of

evaporation–wind feedback, Marshall et al. (2008) proposed a

mechanism emphasizing the role of SST-driven evaporation

and moisture convergence related to increased shortwave ra-

diation over the eastern flank of MJO convection. Recent

studies showed that ocean feedbacks can increase horizontal

moisture advection and moisture convergence and hence favor

the eastward propagation of MJO convection (e.g., Hsu and Li

2012; DeMott et al. 2019).

However, there is still no consensus about the influence of

atmosphere–ocean coupling on MJO prediction in dynamical

models. Several studies demonstrated that the atmosphere

general circulation model (AGCM) forced with high-temporal-

resolution SST has better performance in forecasting MJO

compared to that forced with low-temporal-resolution SST (e.g.,

Kim et al. 2008), and similar preponderance is also found in a

coupled GCM compared to the AGCM (e.g., Seo et al. 2009;

Kim et al. 2010, 2018; Fu et al. 2013; Shelly et al. 2014; Green

et al. 2017). However, Klingaman and Woolnough (2014)

pointed out that the sensitivity of MJO simulation to air–sea

feedbacks might be overlaid by mean-state bias between the

coupled and the uncoupled models. Fu et al. (2015) also argued

that the influence of atmosphere–ocean interactions on MJO

prediction varies from event to event.

In summary, although it has been emphasized in several

previous studies, the role of the ocean in predicting the MJO is

not yet clearly understood. Since the ocean interacts with the

MJO on various time scales, the impacts of low-frequency

ocean variability were not fully discussed. In addition, the exact

role of atmosphere–ocean coupling might be model depen-

dent, so results using different models are beneficial for

reaching a consensus. In this study, we assessed the importance

of air–sea coupling based on a global coupled model: the Scale

Interaction Experiment–Frontier Research Center for Global

Change (SINTEX-F; Luo et al. 2003). Previous studies have

shown that this model has a good performance in simulating

tropical climate and reducing equatorial SST biases with an

improved coupling physics (Luo et al. 2003, 2005b). This model

can well predict tropical climate variations such as ENSO and

IOD on seasonal-to-multiyear time scales (Luo et al. 2005a,

2007, 2008a,b; He et al. 2020). The initial conditions of the

SINTEX-F prediction system were generated by a simple

coupled SST-nudging scheme and hence do not contain the

MJO information.

In this study, we further assimilate the JRA-25 6-hourly data

into the model in order to obtain realistic atmosphere infor-

mation in the initial conditions. By performing a set of 2-month

hindcast experiments with and without air–sea coupling, we

explored the influence of air–sea interactions on MJO predic-

tion. Section 2 describes details of the forecast system, experi-

ment designs, analysis methods, and observational data used for

validation. Then a general assessment of model performance in

predicting tropical circulation and convection related to the

MJO is conducted in section 3. Section 4 comparesMJO forecast

skills in coupled and AGCM-only experiments. Section 5 illus-

trates the effects of the atmosphere–ocean interactions on the

prediction of MJO evolution. The results are summarized and

discussed in section 6.

2. Model hindcast experiments and methodology

a. Model and experiments

In this study, one coupled and two AGCM-only hindcast

experiments (Table 1) have been carried out to examine the

role of air–sea coupling in predicting the MJO. The coupled

general circulation model (CGCM) experiment is conducted

using the globally coupled SINTEX-F model. Its atmospheric

component is ECHAM4 with a horizontal resolution of 1.18 3
1.18. It uses a 19-level hybrid sigma–pressure vertical coordi-

nate with model top at 10 hPa (Roeckner et al. 1996). The

physical processes used in the model include the bulk mass flux

formula of Tiedtke (1989) for cumulus convection and the code

of Morcrette et al. (1986) for radiation [see Luo et al. (2005b)

for more detailed descriptions]. The oceanic component is the

OPA 8.2 (Madec et al. 1998) with the ORCA2 configuration:

an Arakawa-C type grid based on a 28 Mercator mesh. In the

Northern Hemisphere, the Arctic pole is transformed to two

poles in the Eurasian and North American continent, respec-

tively, and the anisotropy ratio of the grid meshes after the

transformation becomes nearly one everywhere. The OPA

model resolution is 28 cos(latitude) in latitude3 28 in longitude
with finer meridional resolutions of 0.58 near the equator to

better simulate the equatorial waves. There are 31 vertical

z levels ofwhich 19 levels lie at the top 400m. The coupling fields

are exchanged every 2 h between the ocean and atmosphere
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without any flux correction by the Ocean Atmosphere Sea Ice

Soil (OASIS) 2.4 coupler (Valcke et al. 2000). Impacts of the

ocean surface currents on the surfacemomentumflux have been

considered (Luo et al. 2005b). Detailed descriptions of the

model are given to Luo et al. (2005a,b).

In addition to the coupled model experiment, two comple-

mentary AGCM-only hindcasts using ECHAM4 model are

conducted, namely, the control experiment (CTL) and the

AMIP experiment. To completely remove the influence of

upper-ocean variability, the CTL experiment is persistently

forced by the observed climatological monthly mean SST. In

the AMIP experiment, the atmosphere is forced by the ob-

served monthly SST, derived from the NOAA SST reanalysis

blended from in situ data and infrared satellite data using

optimum interpolation (OISST v2; Reynolds et al. 2002). Note

that the prescribed monthly SST data in both the CTL and

AMIP experiments are linearly interpolated to obtain SST

fields at each model time step.

All the three experiments are initialized from the first day of

each month from January 1984 to December 2008 and then in-

tegrated for 2 months (about 60 days), so we have performed 25

years 3 12 months 5 300 runs for each experiment. The initial

conditions for ECHAM4 are obtained from a simple spectral

nudging scheme that assimilates the 6-hourly u wind, y wind, air

temperature, and surface air pressure derived from the JRA-25

reanalysis data (Onogi et al. 2007). The spectral nudging coef-

ficients of divergence, vorticity, air temperature, and surface air

pressure are 0.579 (48 h), 4.63 (6 h), 1.16 (24 h), and 1.16 (24 h),

respectively (Jeuken et al. 1996). In addition to the realistic at-

mospheric forcing, the model SST in the CGCM is also strongly

nudged toward the observed SST interpolated from NOAA

weekly OISST v2 data (i.e., the coupled SST–nudging initiali-

zation scheme; see Luo et al. 2005a). This simple coupled data

assimilation scheme helps reduce the model’s initial shock and

improve climate prediction skill (e.g., Luo et al. 2005a, 2008a,b).

Figure 1 displays the anomaly correlations between the ob-

servation (see section 2b) and the initial conditions generated by

the spectral nudging scheme.We examined the initial conditions

of anomalous outgoing longwave radiation (OLR) and zonal

wind at pressure levels of 850 hPa (U850) and 200 hPa (U200)

that are used for calculating the MJO metrics. Significantly high

correlations (.0.90) are found for zonal winds at both 200 and

850 hPa over most regions of the globe (Figs. 1a,b). Relatively

low correlations of theU850 are found over the Tibetan Plateau,

the eastern coast of Africa, and the west coasts of North and

South America, where the topography is dominated by high

mountains. In contrast, much lower correlations are found in

OLR between the model initial conditions and the NOAA

satellite observations, particularly over the tropical region

(Fig. 1c). Similar correlations in OLR can be obtained if com-

pared against the OLR from the JRA-25 instead of NOAA

OLR. This is probably due to the fact that the model OLR is

derived based on cloud and convection parameterizations, in

which large uncertainty can be involved. Assimilating moisture

observations might help improve the OLR initial conditions

(Wu et al. 2020), which warrants a future study.

b. Validation data

The observational daily data used in this study during

1984–2008 includes zonal winds, meridional winds, vertical

velocity, air temperature, geopotential height, and specific

humidity from JRA-25 datasets (Onogi et al. 2007), OLR

from the National Oceanic and Atmospheric Administration

(NOAA; Liebmann and Smith 1996), and observed SST data

provided by AVHRR-OISST v2 (Reynolds et al. 2007).

c. Calculation of the MJO indices

The Real-Time Multivariate MJO (RMM) index (Wheeler

and Hendon 2004, hereafter WH04) has been widely used to

detect coupled MJO signals between deep convection and cir-

culation along the equatorial zone. The averaged U850, U200,

and OLR between 158S and 158N are used for a combined em-

pirical orthogonal function (EOF) analysis. The RMM1 and

RMM2 are defined as the PC1 and PC2 of the first two leading

EOF modes. The RMM indices can represent the amplitude of

MJO, and the phase angle derived from the RMMs can capture

its propagation feature. The calculation of the observed and

forecasted MJO indices follows the procedures described in

previous studies (e.g., Lin et al. 2008; Gottschalck et al. 2010;

Rashid et al. 2011; Vitart 2017), and the removal of the 120-day

running mean is used to subtract interannual variability. Due to

the short integration (i.e., 2 months) of each forecast, the re-

analysis data are concatenated preceding the model initial date

to compute the 120-day running mean.

FollowingWang et al. (2014), each variable associated with the

RMM index is denoted as X(t, t), where t represents the initial

time and t represents the lead days. The intraseasonal anomalies

of each 2-month forecast are obtained by the following steps:

1) The daily climatology is calculated from the mean of the

forecasts during 1984–2008 as a function of lead day and

start calendar month.

2) The raw daily anomaly A(t, t) is calculated by subtracting

the daily climatology from X(t, t).

3) Previous 120-day averages are removed on each grid.

Assuming the forecast target day is n, we compute the

TABLE 1. Three hindcast experiments (1984–2008). We have performed 300 runs (i.e., 25 yr 3 12 months yr21) for each experiment,

and each run is integrated for 2 months.

Expt Model SST forcing Initialization

CTL AGCM (ECHAM 4.6) Climatological SST Nudging 6 hourly u wind, y wind, air

temperature, surface pressure of

JRA-25 and SST of OISST v2

AMIP AGCM (ECHAM 4.6) Observed SST

CGCM CGCM (SINTEX-F,

ECHAM 4.6 1 OPA 8.2)

Predicted SST in the coupled model
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running mean of the forecast anomalies at lead times of

1 2 n days and the observational anomaly O(t) of 120 2

n days prior to the model initial date: Am(t, t) 5

(1/120)
h
�n

i51A(t, i)1�1202n

i51 O(t2 i)
i
, and then we sub-

tract this 120-daymean anomaly from the daily anomaly to get

rid of the interannual variability:As(t, t)5 A(t, t)2 Am(t, t).

The observed RMMs are obtained from the PCs of the first

two leading combined EOF modes of OLR, U850, and U200

anomalies, while the forecast RMMs are reconstructed by

projecting the forecast anomalies of OLR, U850, and U200

onto the observed two EOFs modes (Fig. 2). Note that the

anomaly of each variable has been normalized by its standard

deviation based on the observations, following Gottschalck

et al. (2010). In this study, the wind fields derived from JRA-25

datasets are used for validation, which slightly differs from the

NCEP reanalysis datasets used in WH04. Thus, the observed

RMMs are derived based on the multivariate EOF analysis

using OLR from NOAA and zonal winds from JRA-25

(Fig. 2). Similar to what is shown in Fig. 1 of WH04, EOF1

characterizes enhanced convection over the eastern Indian

Ocean and Maritime Continent, and EOF2 depicts enhanced

convection over the western Pacific (WP) and suppressed

convection over the tropical Indian Ocean (TIO). In addition,

A spatial phase shift between convection and zonal winds,

along with a baroclinic structure of circulation in the upper and

lower troposphere can be found as in WH04.

Apart from the RMMs, we also calculated intraseasonal

anomalies of several fields related to the MJO diagnoses (see

section 5) by subtracting the 120-day running mean and then

applying an additional 5-day running mean to smooth out the

high-frequency signal.

d. Measure of MJO prediction skill

The anomaly correlation coefficient (ACC) and root-mean

square error (RMSE) are often used to quantify prediction

skill. In this study, the bivariate ACC and RMSE as a function

of lead time based on the observed and predicted RMM1 and

FIG. 2. The (a) first and (b) second leading EOF eigenvectors of

combined fields of OLR (black solid lines), U850 (red dashed

lines), and U200 (blue dotted lines). The variance explained by

each mode is given at the top right of each panel.

FIG. 1. Correlation coefficients between the observations and

initial conditions of (a) U200, (b) U850, and (c) OLR anomalies

during 1984–2008. (d) Zonal mean of the correlations as a function

of latitude. Note that the observed OLR is derived from the

NOAAsatellite observation and results based on the JRA-25OLR

are similar.
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RMM2 are computed to represent MJO prediction skill, which

are shown as follows (Lin et al. 2008; Rashid et al. 2011):

ACC(t)5
�
n

t51

[a
1
(t)b

1
(t
0
, t)1 a

2
(t)b

2
(t

0
, t)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

t51

[a21(t)1 a22(t)]

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

t51

[b2
1(t0, t)1b2

2(t0, t)]

s ,

RMSE(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

f[a
1
(t)2b

1
(t

0
, t)

2
]1 [a

2
(t)2b

2
(t

0
, t)

2
]g

s
,

where a1(t) and a2(t) are the observed RMM1 and RMM2 at

day t, and b1(t0, t) and b2(t0, t) represent their corresponding

forecasts from time t0 with a lead time of t days. The baselines

for ACC and RMSE as useful prediction skill are 0.5 and
ffiffiffi
2

p
,

respectively. The latter is because the standard deviation of

observed RMMs is about 1, so that the bivariate root-mean-

square error is about
ffiffiffi
2

p
(Rashid et al. 2011).

3. Overall prediction skill of atmospheric circulation
and convection

In this section, we first evaluated the overall prediction skill of

the zonal wind anomalies in the upper and lower troposphere

based on the three hindcast experiments. Figure 3 shows the

ACC between the observed and predicted U200 at lead times of

5, 10, 15, and 20 days in the CTL and its difference from the other

two sets of experiments. In general, the forecasts at the lead

time of 5 days show significantly high correlations (r. 0.8) in

the CTL (Fig. 2a), although relatively low correlations are

found in the equatorial central-eastern IndianOcean (r. 0.3)

and western Pacific Ocean (r . 0.6) where the MJO is active.

The correlations decrease with the increasing forecast lead

time, and in most of the tropical regions the skill is still pos-

itive at 20 days lead (Fig. 3d).

It is shown that the differences in the correlations between the

AMIP and the CTL (AMIP-CTL; middle column in Fig. 3) re-

main positive over the tropical Indian-Pacific region for predic-

tions at all of the four lead times, indicating a generally higher

prediction skill when the AGCM is forced by observed monthly

SST. The differences of the correlations become larger with the

increasing lead time, which reaches approximately 0.3 over the

tropical eastern Indian Ocean and Pacific at a lead time of

20 days (Fig. 3h). Similarly, the correlation difference between

the CGCM and the CTL (CGCM-CTL; right column in Fig. 3)

remains positive at lead times of up to 20 days. In addition,

positive differences between the CGCM and the AMIP can

also be seen in parts of the tropics, which may indicate the

possible contributions of air–sea interactions since the SST

values in the CGCM forecasts are close to but not identical to

the observed values in the AMIP experiment. Please note that

these anomalous fields contain the total variations from syn-

optic to interdecadal time scale. Skill related to the MJO is

discussed in section 4.

Similar results are also found in the predictions of the tropical

U850 anomalies (not shown). Although the correlation skill

in predicting the OLR is lower compared to the zonal wind

anomalies (not shown), the AMIP and CGCM experiments also

show improved prediction skills compared to theCTL. The lower

prediction skills of the OLR can be attributed to the low ACC

between the OLR initial conditions and the observations (re-

call Fig. 1c).

FIG. 3. (a)–(d) Anomaly correlation coefficient (ACC) scores between the predicted and observed U200 at the lead time of (top to

bottom)15,110,115, and120 days over the region of 308N–308S, 308E–1808 during the period 1984–2008 in the CTL, as well as (e)–(h)

their difference between the AMIP and the CTL and (i)–(l) their difference between the CGCM and the CTL.
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4. MJO prediction skills

In this section, we examineMJO prediction skill based on the

RMM indices in three experiments. The eastwardmovement is a

key characteristic though the MJO shows complex propagation

features in boreal summer (Lawrence and Webster 2002;

Jiang et al. 2004). Figure 4 displays prediction skill for the

RMM indices during the entire year for an overall assessment

of MJO skill, which is about 12, 13, and 18 days in the CTL,

AMIP, and CGCM experiments, respectively, corresponding

to ACC (RMSE) skill of 0.5 (
ffiffiffi
2

p
). This result suggests that

including the air–sea coupling in CGCM can significantly

improve MJO prediction skill by almost 1 week over the two

sets of AGCM-only forecasts (Fig. 4).

Considering its pronounced seasonality in propagation char-

acteristics (e.g., Wang and Xie 1996; Jiang et al. 2018), MJO

forecast skill can be different in summer and winter. Previous

studies showed that the ACC skill of the MJO prediction is

usually higher during boreal winter than that in summer (e.g.,

Lin et al. 2008; Wang et al. 2014). We further examined the

variation of the ACC skill among the 12 calendar months

(Fig. 5a). Our results show that the ACC skill is substantially

higher during boreal winter (November–April) than during

boreal summer (May–October) across all the three hindcast

experiments, in agreement with previous studies. Interestingly,

the prediction skills are largely improved during September to

March in the CGCM experiment, suggesting that the tropical

atmosphere–ocean interactions have a strong influence on the

MJO in these months. By averaging the bivariate ACC of the

RMM indices during boreal winter, the useful prediction

skill increases to approximately 14 (CTL), 15 (AMIP), and

20 (CGCM) lead days, respectively. Compared to ACC skill in

predicting the intraseasonal variations throughout the entire

year, the lead time with useful forecast is 2–3 days longer during

the boreal winter in all the three experiments (Figs. 4a and 5b).

To further evaluate the influence of air–sea coupling on pre-

diction of large-scale convection and circulation related to the

MJO, we also compared prediction skill of the RMM indices-

constructed OLR, U850, and U200, respectively (hereafter

referred as RMM_OLR, RMM_U850, and RMM_U200), fol-

lowing Kim et al. (2014). They are obtained by projecting the

observed and predicted anomalies of each variable onto the

corresponding component of the two leading combined EOF

eigenvectors described above.

The ACC skills of the RMM_OLR, RMM_U850, and

RMM_U200 as a function of lead time are shown in Fig. 6.

The impacts of the atmosphere–ocean interactions on the

prediction of the MJO-related zonal wind and convection are

found to be similar to their impacts on the prediction of the

total RMM indices (recall Figs. 4 and 5). The prediction skills

by the CGCMexperiment are higher than that in the CTL and

AMIP hindcast experiments. The advantage of the coupled

model is found to bemore obvious for theRMM_OLR (Fig. 6a),

FIG. 5. (a)BivariateACCof theRMM1andRMM2as a function of

start month and lead time based on the three hindcast experiments.

The contours are plotted from 0.5 (top line) to 0.9 (bottom line) with

an interval of 0.1. (b) As in Fig. 4a, but for skill comparison based on

the winter season [November–April; see the blue shading in (a)].

FIG. 4. (a) ACC and (b) RMSE skill in predicting the RMM

indices as a function of lead time, based on the CTL, AMIP, and

CGCM hindcast experiments during 1984–2008. The horizontal

dashed line in each panel indicates the baseline of useful skill (i.e.,

ACC 5 0.5 and RMSE5
ffiffiffi
2

p
).
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especially during the second and third forecast week (i.e., at

8–21-day lead), indicating amore critical role of the atmosphere–

ocean coupling in predicting the MJO-related convection com-

pared to the MJO-related circulation. Interestingly, the ACC of

the RMM_OLR at 1-day lead reaches about 0.8, while the

tropical OLR on each grid is poorly reproduced in the initial

conditions (recall Fig. 1c). This discrepancy may occur because

the RMM_OLR mostly reflects the large-scale MJO activities

that can be better reproduced in the model.

5. Prediction of MJO evolution

a. Diagnostics of MJO propagation

The aforementioned results indicate that the atmosphere–

ocean coupling plays an important role in improving the

MJO forecast. In this section, we attempt to explore how the

air–sea coupling influences the MJO prediction. The roles of

air–sea interactions in the prediction of MJO events over the

periods of observational campaigns such as the Tropical

Ocean Global Atmosphere—Coupled Ocean–Atmosphere

Response Experiment (TOGA COARE), Year of Tropical

Convection (YOTC), and Dynamics of theMJO/Cooperative

Indian Ocean Experiment on Intraseasonal Variability in the

Year 2011 (DYNAMO/CINDY) experiments were discussed

in a variety of previous studies (e.g., Woolnough et al. 2007;

Shelly et al. 2014; Fu et al. 2013). In this section, a suite of

diagnoses are applied to the hindcasts with a longer period

(i.e., 1984–2008).

The role of air–sea interactions for MJO development

and propagation is analyzed by comparing the temporal-

spatial evolution of intraseasonal convections in the observa-

tions and the three sets of hindcast experiments. Following Jiang

(2017), the observed and predicted MJO evolution patterns are

derived by lead–lag regression of OLR anomaly onto itself av-

eraged over the equatorial eastern Indian Ocean (EEIO; 58N–

58S, 758–858E). Note that the regression coefficients are scaled

by 21 standard deviation (STD) of the EEIO OLR anomalies

for the sake of convenience. Given that the hindcasts in this

study are initialized once per month, we choose different days in

eachmonth, rather thanone specific day, as the reference time to

conduct lead–lag regression to make the results more reliable.

Table 2 shows pattern correlation coefficients (PCCs) between

TABLE 2. Pattern correlation coefficients (PCC) between the

observed and predicted time–longitude evolution of the regressed

OLR anomalies averaged over 108N–108S in the three sets of

hindcast experiments based on the regressions against the EEIO

OLR at different reference times (i.e., the 1st, 2nd, . . . , 21th day of

each month). PCC is calculated on a time–longitude domain of

408E–1808 and lead times of 11 to 131 days.

Reference time

(the Nth day of each month) CTL AMIP CGCM

1 0.77 0.83 0.87

2 0.82 0.87 0.90

3 0.83 0.87 0.90

4 0.82 0.84 0.90

5 0.80 0.81 0.88

6 0.79 0.78 0.87

7 0.78 0.76 0.88

8 0.78 0.76 0.88

9 0.81 0.79 0.89

10 0.83 0.82 0.89

11 0.83 0.82 0.90

12 0.82 0.83 0.92

13 0.82 0.84 0.93

14 0.84 0.84 0.93

15 0.85 0.84 0.93

16 0.86 0.84 0.93

17 0.87 0.86 0.92

18 0.87 0.86 0.91

19 0.87 0.84 0.90

20 0.87 0.84 0.89

21 0.87 0.84 0.89

FIG. 6. Bivariate ACC skill of the RMM indices constructed with

(a) OLR, (b) U850, and (c) U200 respectively based on the CTL,

AMIP, and CGCM hindcast experiments during boreal winter

(November–April) in 1984–2008.
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the observed and predicted MJO evolutions of patterns on the

Indo-Pacific regions (408E–1808). The PCC scores in the CGCM

are consistently higher than that in the two AGCM-only hind-

casts (Table 2), which suggests improved prediction of MJO

evolutions in the coupled model. Considering the difference of

the prediction skill between the AGCM-only and CGCM

hindcasts becomes clearer 1 week after the initial forecast date

(recall Figs. 4 and 5), the following diagnoses focus on the results

when the reference time is the eighth day of each month

(hereafter RTD8). In addition, this regressed pattern can better

represent an entire evolution ofMJO convection during days 1–

31 for the MJO events that start to occur on day 1 (i.e., the first

day of each month).

Figure 7 shows Hovmöller diagrams of the lead–lag re-

gressed OLR anomalies along the equator relative to RTD8.

The observed MJO evolution pattern shows a systematic

eastward propagation from the Indian Ocean to the western

Pacific (Fig. 7a). Compared to the observation, the eastward-

propagating signal is relatively weaker in the CTL and

AMIP hindcast experiments (Figs. 7b,c), while largely cap-

tured in the CGCM hindcasts (Fig. 7d), again suggesting the

importance of air–sea coupling. We further examine the

temporal evolution of the MJO-related convection and cir-

culation based on the regressed OLR and 850-hPa wind

anomalies from lag 25 to lag 115 (Fig. 8). Note that all the

following regressed patterns were scaled by 21 STD of

EEIO OLR anomalies. Consistent with the results depicted

in Fig. 7, the MJO convection in the AGCM-only experi-

ments (i.e., the CTL and AMIP) can be initialized and in-

tensified over the TIO only at lead times of up to 2 weeks

(around lag 15), but the signal fails to propagate across the

Maritime Continent (MC) in the following days. In contrast,

this shortcoming in the model prediction can be partly re-

duced by coupling an ocean model (the right column of

Fig. 8). With the development and eastward propagation of

MJO convection, a Gill–Matsuno type of response (Matsuno

1966; Gill 1980) is induced by the convective heating in

the observation and predictions: namely, anomalous easterly

(westerly) occurs to the east (west) of the convection in the

lower troposphere.

b. Physical processes underpinning the MJO propagation

To investigate possible underlying mechanisms underpin-

ning the influence of air–sea interactions on the prediction of

MJO evolution, we diagnosed several physical processes as-

sociated with MJO propagation. According to the moisture

mode theory (Adames and Maloney 2021), MJO convection

is tightly coupled to column-integrated moist static energy

FIG. 7. Longitude–time diagram of regressed intraseasonal OLR anomalies (units: W m22) along the equator

(108N–108S average) in (a) observations and (b)–(d) three sets of hindcast experiments based on the lead–lag

regressions of anomalous OLR onto itself averaged over the equatorial eastern IndianOcean (EEIO; 58N–58S,758–
858E) on the eighth day of each month. All the regressed patterns in the observation and predictions are scaled by

21 standard deviation (STD) of the OLR anomalies averaged over the EEIO. The y axis denotes the lag days from

the reference time (i.e., the eighth day of each month).

9654 JOURNAL OF CL IMATE VOLUME 34

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 09/20/23 04:28 AM UTC



(MSE). A zonal asymmetry of column MSE tendency, posi-

tive to the east of convection and negative to the west of

convection, is considered critical for MJO eastward propa-

gation (e.g., Maloney 2009; Jiang 2017; Wang et al. 2017b).

The MSE is defined as

m5 c
p
T1 gz1Lq , (1)

where T is temperature, cp is specific heat at constant pressure

(1004 JK21 kg21), z is geopotential height, g is gravitational

acceleration (9.8m s22), q is specific humidity, and L is latent

heat of vaporization at 08C.
And the corresponding vertically column-integrated MSE

tendency formula can then be written as follows:

�
›m

›t

�
52hV � =mi2

�
v
›m

›p

�
1Q

r
1Q

t
, (2)

whereV denotes the horizontal velocity, v is pressure vertical

velocity, and angle brackets represent a mass-weighted ver-

tical integral from 1000- to 100-hPa level. The left-hand term

represents the MSE tendency, and the right-hand terms de-

note the horizontal and vertical advection, the sum of surface

sensible and latent heat flux (Qt), and the sum of vertically

integrated longwave and shortwave radiation heating rate

(Qr), respectively.

In addition, under the weak temperature gradient ap-

proximation (Sobel et al. 2001), the water vapor dominates the

MSE and plays a key role in regulating tropical intraseasonal

convection (Adames and Maloney 2021). The formula of the

moisture budget is written as follows:

›q

›t
52V � =q2v

›q

›p
2
Q

2

L
, (3)

whereQ2 is the apparent moisture sink, andL is the latent heat

of condensation. The left-hand term represents the specific

humidity tendency, and the right-hand terms denote the hori-

zontal advection, vertical advection, and moisture changing

rate due to condensational heating, respectively.

Figure 9 illustrates evolution of the regressed column verti-

cally integrated MSE anomalies and averaged specific humidity

anomalies in the lower troposphere (850–400 hPa) against

Indian Ocean OLR anomalies at RTD8. The close association

between MSE and specific humidity anomalies is clearly seen in

both observations and all the three sets of experiments.Also, the

evolution of these MSE and moisture anomalies is consistent

withMJO convective signals in the observation and experiments

(recall Fig. 7). In the observation, the eastward propagation of

the maximum moisture (MSE) anomalies is closely associated

with the eastward-propagating MJO convection (Fig. 9a). Also

consistent with the standing MJO convection over the TIO in

both the CTL and AMIP experiments, standing moisture (and

MSE) anomalies are also discerned (Figs. 9b,c). In the CGCM

experiment, maximummoisture (MSE) anomalies show gradual

eastward migration along with the MJO convection, although

these eastward-moving moisture (MSE) anomalies are less well

organized as in the observations (Fig. 9d).

FIG. 8. Regressed intraseasonal anomalies of OLR (shaded; Wm22) and 850-hPa wind (vectors; m s21) (top to bottom) from lag25 to

lag115 based on lead–lag regression against the EEIOOLRanomaly at the eighth day of eachmonth in (left) observation and (remaining

columns) three sets of hindcasts. Wind fields are only plotted when u wind speed is greater than 0.9m s21 and y wind speed is greater than

0.1m s21. Spatial smoothing is performed by nine-grid running average.
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These above results, therefore, suggest that the higher MJO

prediction skill in the CGCM experiment can be attributed to

better representation of moisture processes that promoteMJO

convection. A further diagnosis shows that the midtropo-

spheric moisture anomaly maximum, corresponding to the

MJO deep convective center, can propagate eastward to the

MC region in the observation and CGCM hindcast from lag 0

to lag110 (Figs. 10a,d,e,h). In contrast, this propagation is not

successfully predicted in the CTL and AMIP experiments

(Figs. 10b,c,f,g). One key factor that regulates this process may

be a more distinct dipole pattern of the moisture tendency in

the observation and CGCM, that is, moistening (drying) to the

east (west) of MJO major convection (Figs. 10i–l), which is

associated with the horizontal moisture advection modulated

by the MJO circulation (Jiang 2017; Jiang et al. 2020b).

However, deficiencies are also noted in the CGCM. For ex-

ample, the propagation of the moisture anomalies is not well

organized, and the moistening to the east ofMJO convection is

also weaker than that in the observation.

Figure 11 further displays vertical–longitudinal cross sec-

tions of anomalous circulation overlaid by the specific humidity

anomalies, derived by lag-0 regressions of these fields onto the

OLR anomalies over the EEIO. The enhanced moisture anom-

alies, with their maximum in the midtroposphere, are largely

collocated with the MJO convection in both observations and

three hindcast experiments (Figs. 11a–d). A notable difference in

moisture anomalous patterns between the CGCM and two

AGCM-only experiments is found in the planetary boundary

layer (PBL) and lower troposphere to the east of MJO convec-

tion center. Consistent with the observations (Fig. 11a), positive

moisture anomalies are detected in the boundary layer and the

lower troposphere prior to this deep convection in the CGCM

experiment (Fig. 11d), which tends to create an unstable strati-

fication and moisture preconditions to promote the eastward

propagation of MJO convection (e.g., Hsu and Li 2012; Hu et al.

2020). As a result, the vertical moisture anomalous patterns in

both observations and CGCM display a vertical tilting structure,

in agreement with a typical evolution from shallow/congestus

clouds to deep clouds associated with the development of MJO

convection (Benedict and Randall 2007). However, this shallow

convection is largely missing in the CTL and AMIP experiments

(Figs. 11b,c), which can be responsible for the weak eastward

propagation of MJO convection in these two experiments.

Significant differences in theMJO zonal scale are also noted

between the two AGCM-only and the CGCM hindcasts

(Figs. 11b–d). While the strongest descending motion to the

east of MJO convection is present to the east of 1508E in both

observations and the CGCM experiment (Figs. 11a,d), it ap-

pears near 1208E in both the CTL and AMIP hindcasts

(Figs. 11b,c), suggesting a smaller MJO zonal scale in the two

FIG. 9. Hovmöller diagram of the regressed intraseasonal anomalies of 1000–100-hPa mass-weighted column-

integrated MSE (contour interval: 1 3 106 Jm22) and 850–400-hPa vertically averaged specific humidity (shaded;

g kg21) averaged between 108N and 108S (spatial smoothing is done by a nine-point running average) in

(a) observations, (b) CTL, (c) AMIP, and (d) CGCM hindcasts. The y axis denotes the lag days from the reference

time (i.e., the eighth day of each month). Red dashed lines denote the propagating trajectory of the center of the

moisture (and MSE) anomalies in the observation and the CGCM.
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AGCM experiments. Meanwhile, relatively stronger Kelvin

wave responses to the east of MJO convection in the lower

troposphere are also found in the CGCM experiment (Fig. 11d)

than those in the twoAGCM experiments (Figs. 11b,c), which is

further illustrated by Fig. 11e.

Recent studies have suggested that the zonal scale of

MJO circulation is closely associated with MJO propagation

(Wang et al. 2019; Wei and Ren 2019; Chen andWang 2020).

A large MJO zonal scale along with extended and strong

Kelvin wave responses will be conducive to organized

moistening to the east of MJO convection through hori-

zontal moisture advection (Lyu et al. 2021) and boundary

layer moisture convergence, possibly through an enhanced

shallow convection and circulation feedback (Wang and Lee

2017; Wang et al. 2019; Chen and Wang 2020), therefore

favors the MJO eastward propagation.

c. Convection–SST feedback

In general, 1) a better prediction of low-level moistening

(shallow convection) preceding MJO major convection and

2) free-tropospheric east–west asymmetry of the moisture

tendency related to the MJO zonal scale jointly contribute to

an improved prediction of the MJO propagation in the

CGCM. Although the key factor determining these MJO

structures remains unclear, the above results suggest a possible

contribution from the air–sea interaction. To further investigate

the role of atmosphere–ocean coupling, lag-0 regressed equator-

averaged (108N–108S) SST anomalies against the EEIO OLR

anomaly on RTD8 are also shown on the bottom of each

panel in Fig. 11. Note that SSTs prescribed in the CTL ex-

periment are climatological values, and therefore this anal-

ysis was not applied to the CTL hindcasts.

An east–west asymmetry of the SST anomalies relative

to the MJO convection is clearly seen in the observations

(Fig. 11a), i.e., warm (cold) anomalies are present over the

MC (TIO) region, as a result of a combination of radiative

effect and wind–evaporation feedback (DeMott et al. 2015).

In association with the vertical tilting structure of cloudi-

ness, the solar radiation is reduced in the MJO convection

center and its west flank but enhanced ahead of the con-

vection. In addition, the anomalous easterly (westerly)

winds produced by convective heating can reduce (en-

hance) evaporation to the east (west) of MJO convection

over the Indo-Pacific warm pool sector. Both the reduced

evaporation and increased solar radiation favor increasing

SST, and vice versa.

However, this observed SST anomalous pattern is absent in

the AMIP experiment (Fig. 11c), due to the lack of atmo-

spheric feedback to the ocean in this experiment. Instead,

with a two-way coupling between the atmosphere and ocean

components, the CGCM can generate more realistic SST

responses to the MJO (Fig. 11d). This MJO-induced SST

FIG. 10. The evolution of moisture in the free troposphere (850–400 hPa). Vertical–longitude cross section of the regressed specific

humidity anomalies (units g kg21) averaged over 108N–108S (spatial smoothing is done by a nine-point running average) at (left) lag 0 and

(center) lag 110, and (right) the regressed specific humidity tendencies (unit 10210 kg kg21 s21) averaged from lag 0 to lag 19.
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fluctuation in turn can feed back to the atmosphere (DeMott

et al. 2015). For example, the warm SST anomalies to the east

of MJO major convection can help organize the shallow con-

vection and Kelvin wave by enhancing the PBL convergence

and latent heat flux (e.g., Marshall et al. 2008; Hsu and Li 2012;

DeMott et al. 2019). The warmer SST to the east of MJO

convection could also help to sustain a larger zonal-scale in

MJO circulation as indicated by several recent studies (Wei

and Ren 2019; Chen and Wang 2020; Lyu et al. 2021) and is

therefore conducive to the MJO propagation as previously

discussed, although the detailed processes determining the

MJO zonal scale need to be further investigated (e.g., Lyu et al.

2021). Also, the cold SST response to the west can facilitate the

demise of convection. All the feedbacks will be conducive to

the eastward propagation of the MJO. In contrast, the lack of

this air–sea coupling could be responsible for weak moisture

FIG. 11. Vertical–longitude cross section of lag-0 regressed specific humidity anomalies (shaded; unit:

g kg21), anomalous zonal and vertical winds (vectors; m s21 for zonal wind velocity and 0.01 Pa s21 for vertical

velocity) averaged over 108N–108S in the (a) observations, (b) CTL, (c) AMIP, and (d) CGCM hindcasts. Lag-

0 regressed SST anomalies (unit: 8C) averaged over 108N–108S are attached at the bottom of each panel.

(e) Lag-0 regressed U850 anomalies along the equator (108N–108S average) based on the observation (black

solid line), CTL (blue long-dashed line), AMIP (purple short-dashed line), and CGCM (red dot–dashed line)

hindcasts.
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preconditioning process and thus weak MJO propagation in

the two AGCM-only hindcasts.

6. Summary and discussion

In this study we examined the importance of air–sea cou-

pling in predicting the MJO. By comparing the MJO forecast

skill in three sets of hindcast experiments conducted by

AGCM-only models and atmosphere–ocean coupled model,

respectively, we find that the coupled model shows better

forecasts than the AGCM, supporting previous studies that

air–sea interactions can play an important role for the MJO.

Associated with the seasonality in propagation and inten-

sity of the MJO (e.g., Madden 1986; Wang and Rui 1990),

different MJO skill is found during boreal winter and summer

(e.g., Wang et al. 2014), with a higher skill for MJO events

during boreal winter than in summer. Note that the seasonal

skill comparison is based on the RMM indices, which might

be unrepresentative to the poleward and westward propa-

gating components in boreal summer. Thus, our study is

mainly focused on the winter skill intercomparison among the

three hindcast experiments. We find that the advantage of

atmosphere–ocean coupled model over the AGCM in fore-

casting the RMM indices is remarkable during boreal winter

(recall Fig. 5a); useful skill (ACC. 0.5) is found out to about

3 weeks lead in the coupled model experiment, which is about

1 week longer than those in the AGCM-only experiments.

In addition to the improved prediction of the RMM indices,

the coupled model can realistically predict the temporospatial

evolution of the MJO at longer lead times. This result can be

explained by several mechanisms under different theoretical

frameworks. From the moisture mode perspective (Sobel and

Maloney 2012; Adames and Maloney 2021), the improvement

in MJO prediction by air–sea coupling can be attributed to the

improved forecast of moisture evolutions. The CGCM can

reproduce a more realistic east–west dipole of the midtropo-

spheric moisture tendency, which likely arises from a better

prediction of the zonal scale of MJO circulation. In addition,

the low-level moistening ahead of the MJO convection,

which corresponds to the shallow convection and precondition

for MJO deep convection (Hsu and Li 2012), is better

predicted in the CGCM. Moreover, stronger Kelvin wave re-

sponses to the east of MJO convection are also found in the

CGCM, which could also help to enhance MJO eastward

propagations based on the ‘‘trio-interaction’’ theory (Wang

et al. 2016; Wang and Lee 2017).

Further analysis reveals that the better MJO prediction skill

in the CGCM could be also contributed by the improved

representation of high-frequency SST fluctuations related to

the MJO with warm (cold) SST anomalies to the east (west)

of MJO convection, through the aforementioned convection–

SST feedback processes. The SST feedbacks are missing in the

AGCM experiments due to the lack of air–sea coupling, as

previously reported (Kim et al. 2010).

Previous studies argued that the comparison between the

AGCM and CGCM conflates the influences of mean state and

atmosphere–ocean coupling (e.g., Klingaman and DeMott

2020), and the coupling with the ocean could induce a different

mean state. The climatological SSTs of the CGCM 1-month

lead predictions show a weak cold bias in the TIO and WP

(Fig. 12), which could not favor the convection. Therefore, it

does not appear that the slightly different SST climatology in

the CGCM may be responsible for the improved prediction of

the MJO. In addition, we focus on the moisture processes over

the eastern TIO, MC, and WP where the SST biases in the

CGCM are quite small (Fig. 12), so the difference of the cli-

matological SSTs among the hindcast experiments does not

appear to have much impact on our general conclusions.

In addition, previous studies also suggested that models’ sys-

tematic dry bias in simulating the climatological mean moisture

over the MC–WP sector can be an important factor that restricts

models’ ability to simulateMJO propagation (e.g., Gonzalez and

Jiang 2017; Jiang 2017). The climatological mean moisture in the

three hindcast experiments also shows noticeable biases (Fig. 13),

which may limit the forecast skill of the MJO in the models.

Interestingly, compared to the AGCM-only hindcasts, the cli-

matological mean moisture in the CGCM shows no significant

improvement. Therefore, the improved MJO prediction in the

FIG. 12. Difference of climatological mean SST of November–April between the 1-month

CGCM prediction and the AMIP experiment during 1984–2008.
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CGCM experiment may be attributed to the better pre-

dicted MJO circulation (recall Fig. 11). However, large

discrepancy exists between the MJO prediction skill in our

coupled model prediction system and world-leading fore-

cast systems such as ECMWF and GFDL (e.g., Xiang et al.

2015; Kim et al. 2018). This demands future efforts to im-

prove our forecast system, including better initialization

schemes and advanced model physics schemes, etc. On top

of that, a multimember and multimodel ensemble forecast

system based on fully coupled atmosphere–ocean models is

expected to be helpful for reducing the influences of un-

certainties in initial conditions and model errors and making

probabilistic forecasts.
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