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ABSTRACT.  17 

We assess the vertical distribution of radiative heating rates (RHR) in climate models using a 18 

model experiment and A-train satellite observations, for the first time. As RHR relies on the 19 

representation of cloud amount and properties, we first compare the modeled vertical distribution 20 

of clouds directly against lidar-radar combined cloud observations (i.e., without simulator). On a 21 

near-global scale (50S/N), two systematic differences arise: an excess of high-level clouds around 22 

200hPa in the tropics, and a general lack of middle- and low-level clouds compared to the 23 

observations. Then, using RHR profiles calculated with constraints from A-train and reanalysis 24 

data, along with their associated maximum uncertainty estimates, we show that the excess clouds 25 

and ice water content in the upper troposphere results in excess infrared heating in the vicinity and 26 

below the clouds as well as a lack of solar heating below the clouds. In the lower troposphere, the 27 

smaller cloud amount and the underestimation of cloud-top height is coincident with a shift of the 28 

infrared cooling to lower levels, substantially reducing the greenhouse effect, that is slightly 29 

compensated for by an erroneous excess absorption of solar radiation. Clear sky RHR differences 30 

between the observations and the models mitigate cloudy RHR biases in the low levels while they 31 

enhance them in the high levels. Finally, our results indicate that a better agreement between 32 

observed and modeled cloud profiles could substantially improve the RHR profiles. However, 33 

more work is needed to precisely quantify modeled cloud errors and their subsequent effect on 34 

RHR. 35 

 36 

 37 

 38 
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  1. INTRODUCTION 39 

Clouds strongly interact with radiation and modulate the amount of energy reflected, emitted 40 

and absorbed by the Earth system. This redistribution of energy within the troposphere has 41 

implications for climate prediction, as it impacts the large-scale circulation, vertical motions and 42 

atmospheric water cycle (e.g. Stephens et al., 2012). As the earth warms, the spatial distribution 43 

of clouds changes, leading to a modification of the energy balance. Based on sensitivities to cloud 44 

height, the temperature and microphysical properties of a cloud may change drastically. In turn, 45 

its radiative effects may therefore be considerably different and result in either a warming or a 46 

cooling of the atmospheric layer (e.g. Ackerman et al., 1988). For example, the warming generated 47 

by a cirrus cloud in the layers underneath can be large enough to cancel out the ascent of air motion 48 

generated by the Hadley circulation (e.g. Mather et al., 2007). In addition, in climate modeling and 49 

projection, cloud-radiation interactions are particularly important as they drive the cloud-climate 50 

feedbacks that strongly influence a range of climate system behaviors (e.g. Brient and Bony, 2012). 51 

While passive sensor satellites have been monitoring the outgoing and incoming radiative 52 

fluxes at the top of the atmosphere for years (e.g. Wielicki et al., 1996), observations of the vertical 53 

profile of radiative heating is still largely unconstrained, which affects our ability to better 54 

understand and model the present and future climate (e.g. Stephens et al., 2012). For example, 55 

Mace and Wrenn (2013) showed that for a similar top-of-atmosphere (TOA) radiative signature, 56 

clouds can have very different vertical profiles and therefore heating rate profiles, leading to 57 

diverse surface radiative forcings. Since 2006, measurements of the global cloud frequency (CF) 58 

and radiative fluxes at relatively high resolution have been made possible by active sensors 59 

onboard the Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; 60 

Winker et al., 2010) and the CloudSat satellite (Stephens et al., 2002) flying in the A-Train 61 
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constellation. For example, using CALIPSO measurements, Chepfer et al. (2010) developed a 62 

General Circulation Model (GCM) -oriented cloud product to evaluate climate models (e.g., 63 

Cesana and Waliser, 2016). Based on CloudSat measurements and a radiative transfer model, 64 

L’Ecuyer et al. (2008) developed a radiative flux retrieval so-called 2B-FLXHR product. This 65 

product was later improved by integrating other A-Train satellite measurements (Henderson et al., 66 

2013, hereafter H13) from CALIPSO and Moderate Resolution Imaging Spectroradiometer 67 

(MODIS) (King et al., 2003) to take into account the contribution of thin cirrus and near surface 68 

shallow/strato- cumulus clouds and aerosols, referred to as the 2B-FLXHR-LIDAR product. These 69 

observationally-constrained radiative flux retrievals give us the opportunity to characterize 70 

radiative heating features at a vertical resolution much higher than that of passive sensors (Haynes 71 

et al., 2013), although their horizontal coverage is sparser. As a consequence, this very unique 72 

dataset offers a new resource for climate model evaluation, independent from the traditional 73 

observations used to tune models’ fluxes at the top of the atmosphere (e.g., Hourdin et al., 2016). 74 

Some “observation-based” studies have shown the usefulness of these datasets to investigate 75 

the impact of cloud occurrences in vertical profiles of heating rates (e.g., Thorsen et al., 2013) as 76 

well as microphysical properties of clouds (e.g., Waliser et al., 2011), or to determine which layer 77 

of the atmosphere was contributing the most to the cooling/warming of the column (e.g., 78 

Oreopoulos et al., 2016) or even to validate ground-based measurements (e.g., Protat et al., 2014). 79 

However, because the Cloud Model Intercomparison Project phase 5 (CMIP5, Taylor et al., 2012) 80 

did not require participating modeling groups to output radiative heating rates (RHR), very few 81 

studies have yet to take advantage of the 2B-FLXHR-LIDAR product to assess the representation 82 

of vertical structure of RHR in climate models. Fortunately, a recent multimodel climate 83 

experiment co-sponsored by the Global Energy and Water Cycle Exchange (GEWEX) Project’s 84 
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Atmosphere System Study (GASS) Program and the Madden Julian Oscillation Task Force under 85 

the Year of Tropical Convection (YoTC) project (hereafter GASS-YoTC), provides vertically-86 

resolved RHR outputs from a large number of GCMs (Jiang et al., 2015). This makes it possible 87 

to assess climate models on a global perspective when compared to A-Train-based RHR product. 88 

For example, Li et al. (2016) used the aforementioned models and observations to examine the 89 

relation between the models’ biases in RHR and biases in winds, water vapor and cloud mass over 90 

the tropical Pacific Ocean sector, with a special emphasis on the radiative effect of precipitating 91 

hydrometeors. However, to date, no study has documented the effect of models’ cloud biases on 92 

RHR vertical profiles, particularly from a (near) global perspective.  93 

 94 

In this study, we characterize systematic differences in the vertical structure of clouds simulated 95 

by GASS-YoTC GCMs (used to derive the modeled RHR profiles), in a direct comparison (i.e., 96 

no simulators) against the CloudSat-CALIPSO combined cloud fraction (used to derive the A-train 97 

RHR profiles). We then evaluate modeled profiles of RHR against A-Train-based datasets on a 98 

global scale, for the very first time, and analyze how the differences in cloud profiles may affect 99 

the modeled RHR profiles. We describe the different model experiments and observational 100 

datasets in Section 2, the results in Section 3 and 4. Finally, we present our conclusions in Section 101 

5.  102 

 103 

 104 

2. DATASETS AND MODEL EXPERIMENTS 105 

 106 
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2.1 The 2B-FLXHR-LIDAR radiative heating rates  107 

Description of the product 108 

The 2B-FLXHR-LIDAR product, referred to as 2BFL in the rest of the manuscript, combines 109 

CloudSat, CALIPSO, and MODIS observations to generate profiles of RHR at 240 m vertical 110 

oversampled and 1.5 km horizontal resolutions. These are computed based on a forward radiative 111 

transfer model (see the 2BFL Process Description and Interface Control Document on CloudSat 112 

website: http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr-lidar) that is 113 

supplied with the CloudSat/CALIPSO combined cloud mask (so-called radar-lidar geometrical 114 

profile [RL-GeoProf], Mace and Zhang., 2014), CloudSat microphysical retrievals (Radar Only, 115 

2B-CWC-RO, Austin et al., 2009) and collocated MODIS (2B-TAU) and CALIPSO (Cloud 116 

PROfile [CPRO] Level2, version 3, Vaughan et al., 2009) products for clouds and aerosols not 117 

detected by the radar. The fluxes are then converted into RHR using the following equation: 118 

    
𝑑𝑇

𝑑𝑡
=

𝑔

𝐶𝑝

𝑑𝐹

𝑑𝑝
  (1) 119 

Where T is the temperature (K), t is time (s), g is the acceleration due to gravity (m/s2), Cp is 120 

the specific heat content of air at constant pressure (J/kg.K), F is the radiative flux (W/m2) and p 121 

the pressure (Pa). 122 
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In this study, we accumulated nighttime and daytime 2B-FLXHR-LIDAR-R04 granules onto 123 

monthly files from 2007 to 2010 over a 2.5x2.5 horizontal grid and 22 pressure layers from 124 

50hPa to 1000hPa. As the intensity of solar radiation varies with the solar zenith angle, the short 125 

wave (SW) RHR is very sensitive to the diurnal cycle (null at night and maximum at noon, solar 126 

time). The SW RHR are thus normalized at every level by the matching (in time and space) 127 

averaged incoming SW flux at TOA every month, then multiplied by the annual mean climatology 128 

of Clouds and the Earth’s Radiant Energy System TOA SW flux (2001-2014, version 4.0) to 129 

preserve the unit. This takes into account the fact that A-Train measurements are always collected 130 

at 13:30 local time. Using this method rather than that of L’Ecuyer et al. (2008) and Ham et al. 131 

(2017) does not impact the results significantly (not shown). 132 

 133 

Uncertainty analysis 134 

Using CERES fast LW and SW flux dataset (FLASHFlux, Stackhouse et al., 2006) collocated 135 

with CloudSat-CALIPSO footprint and sensitivity studies on input parameters of the algorithm, 136 

H13 quantified bulk uncertainties in the SW and longwave (LW) 2BFL radiation. Most of the 137 

differences are systematic and the largest are found in the downward surface fluxes. At the surface, 138 

CERES flux dataset might have larger uncertainties than the 2BFL product on an instantaneous 139 

scale for two main reasons. First, it does not benefit from the 3D structure of active sensor, which 140 

may add an uncertainty of 12 Wm-2 in the global mean surface fluxes (Kato et al., 2012). In 141 

particular errors in the cloud base height may generate substantial uncertainties in the surface 142 

fluxes (e.g., H13) and better constraining the cloud base height therefore reduces the surface flux 143 

uncertainty (e.g., Mulmenstadt et al., 2018). Second, its sensitivity to thin cirrus cloud does not 144 

allow to detect clouds with optical thickness smaller than ~0.3 or 0.4 (e.g., Minnis et al., 2008, 145 



 8 

Ackerman et al., 2008), which occur in up to ~50% of MODIS clear-sky pixels (Sun et al., 2011). 146 

For example, classifying cirrus-contaminated pixels as clear sky results in non-negligible biases in 147 

the CERES-EBAF SW fluxes (both at the TOA and the surface, e.g., Sun et al., 2011 and H13). In 148 

addition, partially-filled clouds due to the larger swath of CERES cloud mask compared to the 149 

2BFL product may generate differences in the cloud fraction of the two datasets (e.g., Zhao and 150 

Di Girolamo, 2006, Minnis et al., 2008) and, in turn, affect the retrieved fluxes. This is why 151 

differences against CERES estimates at an instantaneous scale cannot be considered as “true” 152 

biases although when averaged over large spatial-temporal scales the random errors largely 153 

decrease (e.g., H13, L’Ecuyer et al., 2008). However, a constant bias occurs at the surface in the 154 

SW clear sky flux against CERES surface dataset, consistent with an independent comparison of 155 

clear sky SW RHR between 2BFL and ground-based observations (not shown). It is partly due to 156 

errors in surface and land reflectance, as identified by Matus and L’Ecuyer (2017), which decreases 157 

the SW absorption. To address this issue, we apply an arbitrary correction of 0.1 K/day to the clear 158 

sky SW RHR for every layer, which was chosen to match clear sky CERES surface observations 159 

(not shown, see also Fig. 11 in H13) and clear sky RHR profiles from independent ground-based 160 

observations (Thorsten et al., 2013; not shown) - because this is a systematic difference it does not 161 

change the shape and variability of the 2BFL clear sky SW RHR. They also showed that increasing 162 

the carbon dioxide concentrations from 330 ppm to 390 ppm reduces the global outgoing LW 163 

radiation by 1.3W/m2. Finally, using one GCM (IPSL5B), we show in the supporting information 164 

(SI) that the spatio-temporal sampling of CloudSat-CALIPSO may generate +/- 0.1 K/day 165 

differences in SW and LW vertical RHR (Fig. S1). However, depending on the strength of the 166 

GCM’s diurnal cycle, the numbers may slightly fluctuate. These biases are significantly smaller 167 

than the model-to-obs differences found in Sec. 4, but may help us explain part of it.  168 
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Here we further investigate the maximum uncertainty that could be generated by errors in 169 

parameters used as inputs in the 2BFL algorithm to compute the RHR. Following H13 sensitivity 170 

experiments, we perturb a set of parameters (Table 1) that have been shown to affect the TOA and 171 

surface fluxes the most by H13 and we analyze the effect of these perturbations on the vertical 172 

structure of the RHR by taking the square root of the sum of square uncertainties and neglecting 173 

covariance between fluxes. Because it is a computationally expensive exercise, we ran the 174 

perturbations over a month only, August 2007, as in H13.  We first focus on for three cloud regimes 175 

(Fig. 1) - later used in Section 4.1 - defined by the value of the large-scale vertical velocity (500) 176 

and their latitudes: convection (500 < -10 hPa/day) or subsidence (500 > 10 hPa/day) in the tropics 177 

(between 30˚N/S) and all vertical velocities in the midlatitudes. 178 

In clear sky, the SW RHR error (Fig. 1d-j-p) is driven almost exclusively by errors in the 179 

specific humidity regardless of the regime (up to +/- 0.03 K/day). For the LW radiation (Fig. 1c-i-180 

o), both the temperature and the specific humidity produce significant errors. Their magnitude in 181 

the middle and high levels is nearly identical and relatively small compared to the lower layers, 182 

where the specific humidity dominates the error in the upper part of the boundary layer (up to +0.4 183 

and -0.3 K/day) and the temperature takes over near the surface and to a larger extent (up to +/-0.5 184 

K/day). In cloudy sky, only the specific humidity has a non-negligible impact on the LW and SW 185 

RHR (Fig. 1e-k-q and 1f-l-r) while the temperature only impacts the LW radiation. In addition, the 186 

two other main contributors to the SW and LW RHR errors are the perturbations of the water 187 

contents, which likely affect the cloud's opacity: ice for convective regimes (in the high levels, 188 

Fig. 1e-f), liquid for subsidence (in the low levels, Fig. 1k-l) and both at midlatitudes (Fig. 1q-r). 189 

However, the impact of changes in the LWC remains small compare to that of IWC because the 190 

opacity of liquid clouds is already large. In the all sky (Fig. 1a-b-g-h-m-n), the maximum 191 



 10 

uncertainty estimates combine all features, which, in some instances, may compensate each other 192 

and result in smaller errors. Finally, we study the zonal distribution of the maximum uncertainty 193 

estimates, which summarizes the uncertainty analysis (Fig. 2). The largest uncertainties come from 194 

either the high levels, driven by IWC perturbations, or the low levels driven by the temperature 195 

perturbation near the surface and a combination of the specific humidity and the LWC 196 

perturbations in the upper part of the boundary layer.  197 

In conclusion, we remind the reader that these maximum uncertainty estimates are not true 198 

uncertainties. For example, the temperature and ERA interim humidity profiles employed in the 199 

2BFL algorithm show a very good agreement with independent observations, even better than 200 

other reanalysis datasets (e.g., Kishore et al., 2011, Simmons et al., 2010). Simmons et al. (2010) 201 

showed differences in surface temperature smaller than 0.5K over land against in situ observations 202 

and smaller than 0.5% for the relative humidity at 2m height. This is far less than the perturbed 203 

parameters used to compute maximum errors in the 2BFL sensitivity experiment (+/- 2K and +/- 204 

25%), which are likely larger than the mean error. Therefore, they should not be considered as true 205 

uncertainty estimates but rather support our understanding of where the differences against GCMs 206 

could come from. Again, we want to emphasize that this maximum combined uncertainty used in 207 

the above analysis is probably largely overestimated as it is very unlikely that these sources are all 208 

biased (high or low) at the same time. To confirm this, we compared the 2BFL RHR profiles of 209 

clear sky conditions with previously published ground-based observations over Darwin (Thorsen 210 

et al., 2013). We found negligible differences between our spaceborne observations and the 211 

Thorsen et al. (2013) ground-based observations (not shown). In cloudy sky conditions, both the 212 

ground-based and spaceborne observations show a very good agreement at levels where the 213 

instruments detect similar amount of clouds (i.e., middle and low levels; not shown) and some 214 
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larger disagreements in high levels, due to differences in cloud fraction and cloud properties.   215 

The RHR products depend on many input parameters, which makes them subject to large 216 

uncertainties as demonstrated in this section. However, the uncertainty related to cloud frequency 217 

and cloud height is not treated here although it has been shown to produce significant differences 218 

among HR datasets (e.g., Ham et al., 2017; Thorsen et al., 2013). To address this and to provide 219 

additional insights on the observational uncertainty, we compare the models RHR profiles in 220 

section 4.1 with not only the 2BFL observations but also with composite observations resulting 221 

from the average of two RHR products (referred to as the merged product): 2BFL and CERES-222 

CALIPSO-CloudSat-MODIS (CCCM, Kato et al., 2010, Ham et al., 2017), which is presented in 223 

the section 2.2 hereafter. However, because we do not have maximum uncertainty estimates for 224 

the CCCM RHR, we do not use them in the full analysis. 225 

 226 

2.2 The CCCM radiative heating rates  227 

In our study, we accumulated nighttime and daytime CCCM granules onto monthly files from 228 

2007 to 2010 over a 2.5x2.5 horizontal grid and 22 pressure levels from 50hPa to 1000hPa, 229 

similar to 2BFL and the GASS-YOTC models. As for 2BFL, the CCCM algorithm also combines 230 

information from CloudSat (2B-CLDCLASS, Sassen and Wang, 2008; 2B-CWC-RO), CALIPSO 231 

(CALIPSO L2 Vertical Feature Mask [VFM] and CPRO products, Vaughan et al., 2009) and 232 

CERES-MODIS (Minnis et al., 2011) observations to derive RHR. However, we may describe it 233 

as being independent of the 2BFL product for several reasons. The input parameters used in the 234 

CCCM algorithm come from different products than for the 2BFL algorithm, except for CloudSat 235 

2B-CWC-RO and CALIPSO CPRO, which provides ice and liquid water contents and effective 236 

radius for radar-only clouds and cloud extinctions for lidar clouds, respectively, in both products. 237 
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In addition, they use a different radiative transfer code (Fu and Liou, 1993), a different re-analysis 238 

product for the environmental parameters (Rienecker et al., 2011), the CCCM resolution is 239 

enhanced to that of CERES and the CCCM profiles are collocated on the CERES footprint (see 240 

Ham et al. [2017] for more details).  241 

To summarize, the main differences between the two products lie in the cloud occurrences 242 

mostly (along with their height), the water contents and the cloud extinctions to some extent. 243 

Although RHR differences in zonally-averaged profiles may be larger than uncertainty estimates 244 

found in section 2.1 (Ham et al., 2017, see also see Fig. S2), the main reason is not necessarily due 245 

to uncertainties in cloud occurrences and extinctions. In the LW, these large differences (up to 0.9 246 

K/day) result from differences in height of the LW cooling and warming while the patterns and 247 

overall values of the two products are fairly similar (within the range of uncertainty found in 248 

section 2.1, Fig. S2, and also Fig. 5a-e). A similar statement can be done in the SW, although 249 

differences of SW warming at high levels in the tropics are larger than the uncertainty estimates 250 

provided in section 2.1 (0.3 K/day vs. 0.1 K/day, Fig. S2), in this particular case likely due to larger 251 

cloud extinction in CCCM product (Ham et al., 2017). Therefore, comparing the models with the 252 

2BFL+CCCM merged observations in addition to 2BFL and its uncertainty estimates - as in 253 

section 4.1 - provides a kind of observational envelope that takes into account the uncertainty 254 

related to cloud properties, cloud occurrences and environmental properties.  255 

 256 

2.3 The model experiments 257 

The modeled profiles of RHR for total, clear and cloudy sky come from 5 models that 258 

participated in the GASS-YOTC experiment (Jiang et al., 2015; Klingaman et al. 2015). The RHR 259 

are outputted 6-hourly and projected onto a 2.5x2.5 horizontal grid from 50˚S to 50˚N and over 260 
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22 standard pressure levels (from 1000hPa to 50hPa). We further averaged into monthly means 261 

for an 18-year period. Averaging over a long period of time allows mitigating the impact of clouds 262 

and climate pattern oscillations (e.g., El Nino-Southern Oscillation, Madden-Julian Oscillation). 263 

However, to provide a sense of the sensitivity of our results to the model record length, we 264 

compared the first and last three years of the multimodel simulations against the observations and 265 

we found identical biases (not shown). The sea-surface temperature (SST) is prescribed except for 266 

one coupled models out of the five GCMs. 267 

Finally, the spatio-temporal uncertainties due to the satellite overpass that is not reproduced in 268 

the models are discussed by Cesana and Waliser [2016] in detail in their supplementary 269 

information (see also Chepfer et al., 2010). They are negligible compared to the model-to-obs 270 

biases (uncertainty<1%). 271 

 272 

2.4 The model-to-obs comparison 273 

While the RHR from 2BFL are not direct measurements, they are intended to represent the 274 

reality as much as possible. This is why 2BFL uses both lidar and radar cloud information. As a 275 

result, it is directly comparable to the models’ output of RHR such as one would do for the 276 

temperature or flux fields, provided that the uncertainty of the measurements is addressed (as 277 

described in the previous Section 2.2).  278 

The cloud information used to produce the observed and modeled RHR are based on the RL-279 

GeoProf dataset (Mace and Zhang, 2014) and the original modeled cloud fraction (i.e., without 280 

using any simulator), respectively.  Therefore, we compare directly the RL-GeoProf vertical cloud 281 

fraction as well as 2BFL liquid and ice water contents with the GASS-YOTC models counterparts 282 

to help us interpret the differences between observed and modeled RHR. The RL-GeoProf cloud 283 
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fraction is computed using 2B-GEOPROF and 2B-GEOPROF-LIDAR products for the same 284 

period of time, horizontal and vertical resolution and using the same cloud thresholds as in the 285 

2BFL product. The only way to obtain the 2BFL ice and liquid water contents was to re-run the 286 

2BFL algorithm, which is why we only outputted one year of data (2007) due to limited access to 287 

computational resources. Finally, we remind the reader that in such comparison (i.e., no simulator 288 

used), limits the evaluation for two main reasons. First, the definition of the cloud among the 289 

models and between the models and the observations are different. Second, the limitations of the 290 

instruments (e.g., lidar and radar attenuation) are not taken into account in such comparison. As a 291 

result, some uncertainties in the cloud comparison remain and prevent us from discussing this in 292 

terms of cloud bias. Instead, we point out cloud differences between the 2BFL product and GASS-293 

YOTC models. However, we want to emphasize that both observed and modeled cloud profiles 294 

are the ones used to compute their corresponding RHR and thus the differences in the observed 295 

and modeled cloudy RHR can be directly linked to cloud differences whether or not these are cloud 296 

biases.  297 

 298 

 299 

3. CLOUD DISTRIBUTION 300 

Contemporary GCMs still struggle to correctly reproduce the climatology of cloud 301 

distributions. Using the most recent version of the GCM-Oriented CALIPSO Cloud Product 302 

(CALIPSO-GOCCP) and CMIP5/CFMIP2 model’s simulations, Cesana and Waliser (2016) 303 

showed that two main biases remain in GCMs: too few low clouds (< 3km) and too infrequent 304 

high clouds (> 7km) in the column that fill too many upper levels when present (being 305 
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geometrically too thick). Another common bias is the height of low-level clouds. In the majority 306 

of the models, the height of the low-level clouds is typically too low compared to CALIPSO-307 

GOCCP observations, suggesting a boundary layer that is too shallow. Here, we directly compare 308 

the RL-GeoProf vertical cloud fraction with the cloud outputs of the file 5 GASS-YOTC models 309 

that provides cloudy sky RHR. Such comparison is not free of uncertainties as no simulator is 310 

used; however, we remind the reader that the cloud differences found here can be directly linked 311 

to cloudy RHR biases. 312 

Figure 3 shows vertical profiles of CF for the RL-GeoProf observations and GASS-YOTC 313 

models, which are later used in this study to understand the biases in the modeled cloudy RHR. 314 

This comparison is consistent with the main results found in the CMIP5/CFMIP2 model analysis 315 

from Cesana and Waliser (2016) – i.e., too many high clouds and too few low clouds - except in 316 

two locations. Near the surface around the equator and in the polar regions, the models seem to 317 

overestimate the amount of clouds compared to RL-GeoProf observations (Fig. 3d). However, for 318 

pressures higher than 900 hPa (i.e., below ~1km), the RL-GeoProf cloud fraction is less accurate 319 

due to both radar clutter and to lidar attenuation, therefore any differences at these levels should 320 

be treated with caution. In the deep tropics, the models produce slightly less high clouds than RL-321 

GeoProf observations while they simulate more of these when compared with CALIPSO-GOCCP 322 

through the lidar simulator (Cesana and Waliser [2016], their Fig. 2). For this type of cloud, the 323 

main difference between CALIPSO-GOCCP and RL-GeoProf observations is the detection of the 324 

sub-visible cirrus clouds (SVC) with a very small optical thickness (i.e., <0.03). The cloud 325 

threshold used in CALIPSO-GOCCP and the lidar simulator does not allow to detect SVCs as 326 

opposed to the version 3 of the CALIPSO science team product that is used in RL-GeoProf 327 

observations. This suggests that the GASS-YoTC models may underestimate the occurrence of 328 
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thin cirrus clouds in the deep tropics. Another possible explanation is that the five GASS-YOTC 329 

models do not suffer from the same bias as the twelve CMIP5/CFMIP2 models.  330 

 331 

 332 

4. RADIATIVE HEATING RATES 333 

4.1 3D Profiles 334 

Based on the above results, we focus our attention on two specific cloud regimes in this section, 335 

defined by the value of the large-scale vertical velocity (500) and their latitudes: convection (500 336 

< -10 hPa/day) or subsidence (500 > 10 hPa/day) in the tropics (between 30˚N/S). Those are 337 

representative of the two main factors driving cloud biases and differences between the 338 

observations and the models, which might affect the vertical distribution of the modeled RHR. In 339 

addition, we will evaluate the middle latitudes (between 30˚ to 50˚N/S) for all 500, in which 340 

models generally lack of low- and mid-level clouds. Note that for this part of the analysis we 341 

excluded the data over land to reduce issues due to vertical interpolation and surface elevation in 342 

the models.  343 

 344 

 345 

4.1.a Convective Regimes 346 

Figure 4-5-6 shows 2BFL (orange lines), merged (purple lines) and multimodel (green lines) 347 

mean profiles of RHR over the three aforementioned regimes of interest for cloudy (difference 348 

between all and clear sky), all and clear sky conditions (top, middle and bottom rows, respectively). 349 

The uncertainty estimates are derived from the same uncertainty estimates as in Fig. 2 but for the 350 
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specific regimes and regions studied in Fig. 4-5-6. To address the uncertainty due to cloud 351 

occurrences, extinctions and height, the merged dataset is used and provide an observational 352 

envelope along with the 2BFL product. Note that we specify “2BFL” when we refer to 2BFL 353 

observations only. Additionally, the corresponding 2BFL and GASS-YoTC cloud fractions (dark 354 

and light black) and ice and liquid water contents (respectively dark and light blue and red) are 355 

shown in the top right corner of each figures. Note that similar to the cloud profiles, the observed 356 

and modeled ice and liquid water contents are those used to derive the 3D RHR. However, neither 357 

a simulator is used in the models, nor uncertainty estimates are provided with the observations, 358 

which is why these observed water contents cannot be used to evaluate the models. On the one 359 

hand, the Earth atmosphere warms by absorbing SW radiation but not enough to compensate the 360 

cooling by LW emission. On the other hand, the clouds slightly modify the picture by enhancing 361 

or mitigating the overall cooling. 362 

In regions dominated by convection (Fig. 4), the models simulate slightly more clouds than 363 

2BFL in the high levels, between roughly 200 and 100 hPa (Fig. 4d, grey line, ~5%), and far less 364 

below 300 hPa (up to 13%). Coincidently, the models have a larger IWC than 2BFL above 300 365 

hPa, which results in too much LW heating compared to the two observational datasets, consistent 366 

with the effect of increasing the IWC in the sensitivity analysis (Fig. 1e, blue and dark blue solid 367 

lines). Note that 2BFL IWC is on average 44.3% smaller than 2C-ICE IWC (not shown), which 368 

has been shown to be in good agreement with in-situ observations (Deng et al., 2013). This IWC 369 

underestimation could affect the 2BFL LW RHR in the high levels. Following our uncertainty 370 

analysis, an increasing of the IWC by 70%, larger than the 44.3% difference with 2C-ICE IWC, 371 

generates an increase of the LW RHR by up to 0.15 K/day in convective regimes (see Fig. 1a and 372 

1e, solid blue line), which would make it closer to the merged product, but still smaller than the 373 
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modeled LW RHR. In the low levels, the sensitivity analysis shows that a 50% decrease of the 374 

2BFL LWC (Fig. 1e, red and dark red dashed lines), which roughly corresponds to the modeled 375 

LWC below 600 hPa, produces negligible impact on the LW RHR. As a result, one may 376 

legitimately think that the substantial lack of LW heating (Fig. 1a, up to 1 K/day) is caused by the 377 

lack of clouds in the corresponding low levels.   378 

Contrary to the LW heating, the SW heating falls within the observational envelope (between 379 

2BFL and the merged observations) in the high levels (Fig. 4b). This large SW uncertainty in the 380 

observations is related to the cloud ice extinction and optical properties. In CCCM, the extinction 381 

coefficients are larger and the ice particle shapes are converted from spherical to non-spherical, 382 

which makes them larger and increases their absorption capacity (Ham et al., 2017, their section 383 

5) and may likely generate an overestimation of the SW RHR. Therefore, the real answer likely 384 

falls within the two observational estimates of the SW RHR. Below 800 hPa, the cooling is 385 

underestimated by the models. Here again, according to the sensitivity analysis, reducing the LWC 386 

generate a relatively small decrease of the SW RHR (< 0.01 K/day, Fig. 1b and 1f) in comparison 387 

with the larger model bias (0.05 to 0.1 K/day).  The scarcity of low-level clouds is therefore likely 388 

the main cause of this bias rather than errors in cloud properties such as the LWC.  389 

The modeled net RHR (Fig. 4c) is mainly driven by the LW component and shows the same 390 

biases as highlighted above: a significant excess (lack) of warming in the high (low) levels 391 

compared to the 2BFL observations and to the merged product in most instances. Finally, in all 392 

sky conditions (Fig. 1e), the large lack of LW warming from clouds (~ -1 K/day, Fig. 4a) is partly 393 

compensated by a significant lack of LW clear-sky cooling (~ +0.5 K/day, Fig. 4h), in the low-394 

levels. This is likely due to a dry bias in the models, which is consistent with that found by John 395 

and Soden (2007), Gonzalez and Jiang (2017) and Wang and Su [2013]. This reduces the water 396 
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vapor LW cooling, more so in the lowest layers where the water vapor content is the largest. 397 

Additionally, larger temperatures near the surface may explain the large decrease of the clear-sky 398 

LW cooling in the models, as shown in the sensitivity analysis (Fig. 1c).  399 

 400 

4.1.b Subsidence regimes  401 

In subsidence regimes (Fig. 5), a significant amount of clouds are present in the boundary layer 402 

with very few overlapping cirrus clouds. This substantial change in the cloud profile tremendously 403 

modifies the RHR profiles, particularly in cloudy sky. For this regime, the two observational 404 

datasets agree fairly well on the shape of the RHR. The smaller amount of low-level clouds 405 

compared to the 2BFL observations (Fig. 5d, grey line, ~ a factor of 2 smaller) likely causes an 406 

underestimation of the magnitude of the modeled LW cloud top cooling (Fig. 5a, green line) and 407 

reduces the amount of LW radiation emitted to the surface, which therefore weakens the warming 408 

underneath the clouds (> 900 hPa). In addition, the low-level cloud-top height is lower in the 409 

models than in the 2BFL observations, according to the peak in the cloud fraction. Thus, the cloud 410 

top cooling is shifted toward lower levels (compare the green line with the orange and purple lines 411 

in Fig. 5a). In the SW (Fig. 5b), the magnitude of the modeled RHR is surprisingly overestimated 412 

compared to both observational datasets, despite the simulation of less low-level clouds. As the 413 

cloud peak is located further down in the models, it allows more SW radiation to penetrate the 414 

lowest layers and increases the SW absorption, despite the smaller amount of cloud and LWC. The 415 

combination of these two biases results in an even larger bias in the net RHR (Fig. 5c). Similarly, 416 
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the LW and SW clear-sky RHR (Fig. 5e-f-g) are too warm in the models and contributes to 417 

enhancing the differences with the observations in the all-sky RHR (Fig. 5h-i-j).   418 

 419 

4.1.c Midlatitude regimes  420 

In midlatitude regimes (Fig. 6), we find very similar RHR profiles as in the subsidence regimes 421 

except in the high-levels wherein the presence of significant amount of clouds generates either a 422 

cooling in the LW (Fig. 6a) or a warming in the SW (Fig. 6b). At midlatitudes, high clouds are 423 

typically storm-track clouds that are optically thick and extend to the middle levels as opposed to 424 

the thinner (both optically and geometrically) cirrus clouds with a higher cloud-top in the deep 425 

tropics. Therefore, the storm-track clouds typically cool in the LW, particularly at the cloud top 426 

(i.e., between 200 and 400 hPa), and warm in the SW (see Fig. S3). On the one hand, the LW cloud 427 

top cooling is slightly underestimated by the models compared to the observations but remains at 428 

the edge of the 2BFL maximum uncertainty estimates. This small difference is likely the result of 429 

the smaller modeled IWC. On the other hand, the smaller amount of mid-level clouds reduces the 430 

SW absorption in the models compared to the observations. In addition, it is interesting to note 431 

that in that midlatitudes regime, the low-level cloud amount and height are very similar in both the 432 

models and the 2BFL observations (Fig. 6d), which results in lower RHR biases and confirms the 433 

importance of getting the correct amount and height of clouds to simulate realistic RHR. Note that 434 

the cloud properties contribute less to the bias in the low levels as the liquid clouds are already 435 

optically thick.  The small differences in the clear-sky RHR profiles (Fig. 6h-i-j) do not impact 436 

significantly the all-sky RHR profiles (Fig. 6e-f-g), which mostly fall within the 2BFL uncertainty 437 

or the observation envelope. 438 

 439 
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4.2 Zonal mean analysis 440 

Here we look into the zonal distribution of the RHR from 50˚S to 50˚N to complement the 441 

results found in the three specific regimes highlighted above. This model evaluation is performed 442 

only against the 2BFL observations, for which we have maximum uncertainty estimates. To 443 

highlight significant model error estimates in Fig. 7-8-9, only biases larger than the observed 444 

maximum uncertainty estimates are shown (right columns). Finally, to mitigate the biases due to 445 

RHR interpolation over land in the models, we apply to all models the surface elevation mask of 446 

the ACCESS1.3 model, which is the most conservative. This results in a substantial reduction of 447 

the bias over land (not shown).  448 

 449 

Figure 7 shows the zonal mean profiles of RHR (LW, SW and net) for the 2BFL observations, 450 

the models and their bias in all sky conditions. From both the regime-based and zonal mean 451 

analysis, it is quite obvious that the largest biases in the net heating rate are mainly driven by the 452 

LW component (bottom row Fig. 7-8-9 and left column in Fig. 4-5-6). Also, the red shading 453 

prevails over the blue shading, meaning that the cooling is globally underestimated in climate 454 

models. The only significant negative biases are found in the middle levels in areas of deep 455 

convection and below 850hPa at all latitudes. The pattern of the biases remains nearly-identical 456 

when using 15 models instead of 5 (see Fig. S4) or when compared to the merged product using 457 

+/- one standard deviation as an uncertainty estimate (Fig. S5).  458 

The clear sky profiles (Fig. 8) exhibit a large positive bias in the lowest levels, roughly below 459 

800hPa in both the LW and the SW radiation.  In the LW, the models’ bias is located almost only 460 

over ocean and can be attributed mostly to differences in the humidity and temperature profiles, 461 

and to a smaller extent, to the lack of carbon dioxide concentration and the satellite sampling 462 
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differences (Fig. S1) that reduce radiation absorption in the observations particularly in clear sky 463 

conditions. Because the amount of water vapor smaller in the lowest layers of the models is 464 

underestimated (below 800hPa, Gonzalez and Jiang, 2017, John and Soden, 2007), there is less 465 

LW cooling (Fig. 8c). This phenomenon does not affect the SW component as much, which should 466 

show slightly less solar absorption (heating, Fig. 8f). The extra-heating around 25˚N in the SW is 467 

partly caused by the overestimation of the albedo in the 2BFL observations over desert areas and 468 

tropical oceans and differences in aerosol loadings (underestimated by the models) between 469 

observations and simulations, which may increase the heating due to water vapor SW absorption 470 

(See also Fig. 1d-j-p).  471 

Figure 9 shows zonal profiles of the RHR in cloudy sky conditions, also called cloud radiative 472 

effect. In the SW (Fig. 9d-e-f, second row), the observations show a warming in high levels due to 473 

SW absorption by high clouds and a cooling in the low levels, generated by a strong reflection of 474 

the optically thick low clouds. The pattern is quite well captured by the models: the atmosphere is 475 

warmed in the vicinity of the cloud while it is cooled below the cloud base, close to the surface. 476 

On the one hand, the cloud differences (e.g. Fig. 3) could cause more SW absorption than in the 477 

observations in high levels (Fig. 9f, P ~ 200 hPa in the tropics) – yet within the observations 478 

maximum uncertainty - and a significant positive bias close to the surface (P > 800 hPa). On the 479 

other hand, they don’t generate as much warming as in the observations in the middle levels and 480 

slightly above 400 hPa. When compared to the merged observations, these two main biases – i.e., 481 

the lack of warming in the middle levels along with the positive bias below 800 hPa - remain (Fig. 482 

S6). 483 

In the LW (Fig. 9, top row), the observed cloud radiative effect in the tropics is less 484 

straightforward, which likely results from the averaging of different cloud regimes, in particular 485 
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the multi-layer clouds, the most frequent in the tropics (e.g., Matus and L’Ecuyer, 2017). However, 486 

this specific pattern is consistent with previous studies using both space-borne (Haynes et al., 2013, 487 

Oreopoulos et al., 2016, Li et al., 2016) and ground-based observations (Mather et al., 2007, 2009, 488 

Protat et al., 2014). The models exhibit significant flaws in the representation of the cloud radiative 489 

effect (Fig. 9c). They are not able to simulate the observed cooling around 500 hPa, which is likely 490 

generated by a change in microphysical properties of cloud (transition from liquid droplets to ice 491 

crystals) at the top of congestus clouds. In addition, they fail to reproduce the warming effect below 492 

500 hPa between 10˚S and 10˚N and between 850 and 950 hPa everywhere. The misrepresentation 493 

of the warming effect below 850 hPa outside 10˚S-15˚N is obviously related to the significantly 494 

lower occurrence of low-level clouds compared to the observations. However, the lower warming 495 

effect toward the base and below the convective clouds (10˚S-15˚N) is less clear. In the 496 

observations, this effect likely results from the averaging of different types of cloud, with roughly 497 

the same cloud top height but cloud base height ranging from 950hPa to 600hPa. These clouds 498 

usually cool the atmosphere at their cloud top and warm toward the base, while having a neutral 499 

effect between the base and the top (see Fig. S3). Therefore, this effect is not well represented in 500 

the models because they simulate substantially less middle- and low-level clouds in the tropics 501 

(Fig. 4d and Fig. 3h-j). In addition, the scarcity of low-level clouds generates cloudier profiles with 502 

high-clouds but no underlying low-clouds in the models than in the observations, i.e., low-clouds 503 

are less numerous in cloudy profiles. As a result, the warming effect in the low levels is smaller 504 

than that observed while the cooling by water vapor is larger. However, the main reason for this 505 

bias seems to be the geometric thickness of the clouds. Similar to the SW, we find very similar 506 

biases against the merged observations except in the high levels between 10 S/N where the slight 507 
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excess of warming in the models falls within the observed uncertainty (defined as +/- one standard 508 

deviation, Fig. S6).   509 

As in all sky conditions, using the 15 models that provide all sky conditions RHR minus the 5 510 

models that provide clear sky conditions to compute cloudy sky RHR generates very similar biases 511 

(see Fig. S7). 512 

 513 

 514 

5. SUMMARY 515 

In this paper, we use model outputs from the GASS-YOTC project (Jiang et al., 2015) and 516 

vertically-resolved measurements of 2BFL CloudSat-CALIPSO-MODIS combined product (H13) 517 

to provide for the first time a model evaluation of detailed 3D radiative heating rates (RHR). This 518 

was impossible to achieve using traditional TOA and surface flux datasets from passive sensors, 519 

which poorly resolve the vertical structure of cloud (e.g., Haynes et al., 2013. Our near-global 520 

scale analysis of the all sky RHR as documented by the A-train satellites (along with a radiative 521 

transfer model) and as simulated by 5 GASS-YOTC models (Fig. 7) reveals that the LW radiation 522 

largely dominates the radiative budget by cooling most of the atmosphere between 50˚S and 50˚N 523 

in agreement with what found by Haynes et al. (2013) and Li et al. (2016). Although the SW 524 

radiation contributes to a warming of the atmosphere, it is not sufficient to counteract the LW 525 

cooling, consistent with previous literature (e.g., Stephens et al., 2012, Trenberth et al., 2009, Wild, 526 

2012).  527 

To perform a fair evaluation of the models, we first address the observational uncertainty by 528 

conducting a sensitivity analysis of the 2BFL algorithm to perturbations in input parameters (Fig. 529 
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1 and Fig. 2). Because uncertainties related to cloud occurrences are not directly considered in this 530 

analysis, we show additional independent RHR observations for comparison in section 4.1 and in 531 

the supplementary material for section 4.2 – with slightly different cloud occurrences and 532 

extinctions. Based on these results, we further identify biases in the models that are larger than the 533 

maximum uncertainty estimates derived from the uncertainty analysis. While the models capture 534 

the overall observed features (i.e., LW cooling and SW warming), they suffer from systematic 535 

biases and fail to reproduce the detailed vertical structure of the RHR, mostly due to differences 536 

in the representation of clouds (Fig. 3, Fig. 4-5-6, top row and Fig. 9). Their ability to reproduce 537 

the correct vertical structure of heating rate profiles is indeed tied to their representation of cloud 538 

amount and associated properties. The direct comparison of modeled and observed clouds and 539 

cloud properties achieved here is not free of uncertainties (e.g., no simulator used), and therefore 540 

does not constitute a cloud evaluation. However, this comparison (in addition to the comparison 541 

of the water contents) helps us identify the possible origins of the cloudy RHR biases, even though 542 

we cannot determine whether the cloud fraction differences are biases or not. 543 

In the models, the clouds tend to produce too little warming in the low and middle levels and 544 

too much warming (too little cooling) in the high levels. For SW radiation, the larger amount of 545 

modeled clouds compared to the observations around 200 hPa generates slightly more SW 546 

warming in the vicinity of the clouds, meaning that ice cirrus clouds absorb more than they reflect 547 

solar radiation in this case (e.g., McFarlane 2008), while they significantly reduce the warming of 548 

underneath levels. On the contrary, the lack of clouds compared to the observations in the lower 549 

levels reduces the shortwave reflection in the vicinity of clouds and allows more absorption in the 550 

underneath levels. For LW radiation, the warming effect of clouds around 200 hPa is overestimated 551 

mostly due to the larger modeled IWC, whereas it is largely underestimated at the middle and low 552 
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levels in deep convective regions (10˚S to 15˚N), far beyond the maximum uncertainty estimates. 553 

Poleward 10˚S to 15˚N, the smaller amount of low-level clouds associated to their lower height 554 

(identified as a bias in previous studies, e.g., Cesana and Waliser, 2016, Nam et al., 2012) generates 555 

more cooling rather than warming as opposed to the observations.  556 

In addition, clear sky RHR differences between the 2BFL product and the models mitigate 557 

cloudy RHR biases in the low levels while they enhance them in the high levels (Fig. 4-5-6, bottom 558 

row, and Fig. 8). The models’ lack of moisture over ocean in the tropics (e.g., Gonzalez and Jiang, 559 

2017, John and Soden, 2007) lead to significant errors in LW radiation. Moreover, variations of 560 

the temperature profiles may cause up to 0.6 K/day differences in the clear sky LW RHR. In 561 

addition, these discrepancies may partly result from an overestimate the aerosol absorption and 562 

underestimate the biomass burning in the models (e.g. Matus et al., 2015), which affects mostly 563 

the SW radiation.  564 

Finally, the RHR biases highlighted in this study are likely to cause cloud biases by modifying 565 

environmental parameters and contributing to changes in the large-scale circulation. For example, 566 

the warming of the upper levels may modify the convection (e.g., Li et al., 2016). On the contrary, 567 

the lack of warming near the surface and in the low levels probably prevents the clouds to lift up 568 

high enough and act as a feedback to nourish the cloud biases (e.g., Brient and Bony, 2012). 569 

Therefore, more work should be accomplished toward characterizing and quantifying cloud biases 570 

using combined CALIPSO-CloudSat product through the use of simulators, which allows a 571 

consistent evaluation. Such studies would allow us to better address cloud biases and determine 572 

whether the cloud differences found in this study are actual biases or not. Subsequently, one could 573 

examine the consequences of these biases on the radiative heating rates more precisely, ultimately 574 

improving the representation of cloud-radiation interactions and modeled cloud-climate feedback. 575 
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For example, we show that when the models simulate cloud profiles similar to the observations, 576 

i.e., at midlatitudes (Fig. 6), the RHR biases are substantially reduced. In addition, a better 577 

representation of cloud properties is also mandatory although the cloud frequency remains the 578 

main contributor to the RHR bias. 579 

 580 
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TABLES 746 

 747 

Table 1: List of perturbations performed with the 2BFL algorithm for the uncertainty analysis. 748 

See H13 for more details about the experiment setup. 749 
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 Parameter Perturbation 

CALIPSO 

IWC 2x / ÷2 

LWC ±20% 

Liquid Reff ±3µm 

Ice Reff ±10µm 

AOD 2x / ÷2 

CloudSat 

IWC ±70% 

LWC ±50% 

Liquid Reff ±25% 

Ice Reff ±25% 

Environmental 

properties 

Specific Humidity ±25% 

Temperature ±2K 

 750 

 751 

 752 

  753 
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FIGURE CAPTIONS 754 

 755 
FIGURE 1: Sensitivity of profiles (y-axis, pressure [hPa]) of the 2BFL LW, SW and net RHR (x-756 

axis, K/day) to perturbations in the input parameters for August 2007. The two left, middle and 757 

right columns represent the LW (left) and SW (right) RHR profiles in all, clear and cloudy sky 758 

conditions for three cloud regimes (described in section 2.2 and 4.1): tropical convection (500 < 759 

-10 hPa/day, between 30˚S/N; top row), tropical subsidence (500 > 10 hPa/day; between 30˚S/N; 760 

middle row) and midlatitudes (all 500 between 30˚S/N and 50˚S/N; bottom row). The light grey 761 

and dark grey shading correspond to the maximum uncertainty estimates – i.e., the square root of 762 

the sum of square uncertainties – computed from all parameters and cloud parameters only, 763 

respectively. Solid and dashed lines designate to positive and negative perturbations while the 764 

reddish, bluish and greenish colors correspond to liquid, ice and environmental parameters, 765 

respectively. See the legend and Table 1 for the exact parameter’s names and section 2.2 for more 766 

detail about the uncertainty analysis. Note that, in clear sky, the impact of environmental 767 

perturbations (i.e., humidity and temperature) on RHR are large whereas they do not have as much 768 

impact when a cloud is present, generating a smaller uncertainty. 769 

FIGURE 2: Zonal profiles (x-axis, latitude [˚N]; y-axis, pressure [hPa]) of RHR maximum 770 

uncertainty estimates (K/day) derived from Table 1 perturbations, i.e., the square root of the sum 771 

of all square uncertainties. The top, middle and bottom row correspond to LW, SW and net 772 

radiation while the left, middle and right column correspond to all, clear and cloudy sky conditions, 773 

respectively. Note that the range is different for SW radiation. 774 

FIGURE 3: Zonal profiles (x-axis, latitude [˚]; y-axis, height [km]) of Cloud Frequency (CF, %) 775 

a) as observed by CloudSat-CALIPSO (RL-Geoprof R04, 2007-2010 daytime and nighttime, 776 
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monthly mean), b) as simulated by 5 GASS-YOTC models (2002-2005, monthly means), along 777 

with c) the standard deviation of the difference between the multimodel mean and the observations 778 

and d) the difference between the multimodel mean and the observations.  779 

  780 

FIGURE 4: Profiles (y-axis, pressure [hPa]) of observed and modeled LW, SW and net RHR 781 

(from left to right; x-axis, K/day) in all, clear and cloudy sky conditions (from top to bottom) for 782 

tropical convection, i.e., 500 < -10 hPa/day, between 30˚S/N. To facilitate the interpretation of 783 

cloudy sky RHR biases, the observed and modeled cloud fraction and IWC/LWC profiles are also 784 

shown in the top right corner (d). Note that there are no uncertainty estimates for the observed CF 785 

(2007-2010) and IWC/LWC (2010). Their modeled counterparts are averaged over a 4-year long 786 

time period (2002-2005) and the shadings correspond to the multimodel standard deviations. The 787 

2BFL observations (2007-2010) are represented in orange. Their uncertainty estimates are 788 

computed from the same data as in Fig. 2 but for the specific region and regime used here. The 789 

merged CCCM+2BFL observations (2007-2010) and its standard deviation are in purple. The 790 

multimodel mean and standard deviation (1991-2008) are shown in green. 791 

FIGURE 5: Same as Fig. 4 but for tropical subsidence, i.e., 500 > 10 hPa/day, between 30˚S/N. 792 

FIGURE 6: Same as Fig. 4 for midlatitudes, i.e., all 500 between 30˚S/N and 50˚S/N.  793 

FIGURE 7: Zonal profiles (x-axis, latitude [˚]; y-axis, pressure [hPa]) of annual mean RHR 794 

(K/day) for the 2BFL observations (left column, 2007-2010 daytime and nighttime, monthly files) 795 

for the multimodel mean (5 models, 1991-2008, middle column) and the multimodel mean bias 796 

(right column). The rows correspond to the LW, SW and net radiation from the top to the bottom. 797 

Horizontal black dashed lines separate the low- and mid-level clouds (680 hPa), and mid- and 798 

high-level clouds (440 hPa). The red and blue shading designate cooling and warming, 799 
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respectively. To highlight significant model error estimates in Fig. 7-8-9, only biases larger than 800 

the observed maximum uncertainty estimates are shown (right columns). Note that the SW RHR 801 

(and bias) has a different range compared to the LW and net RHR.  802 

FIGURE 8: Same as Fig. 7 for clear sky conditions.  803 

FIGURE 9: Same as Fig. 7 for cloudy sky conditions (defined as all sky minus clear sky). 804 

  805 
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FIGURE 1: Sensitivity of profiles (y-axis, pressure [hPa]) of the 2BFL LW, SW and net RHR (x-806 

axis, K/day) to perturbations in the input parameters for August 2007. The two left, middle and 807 

right columns represent the LW (left) and SW (right) RHR profiles in all, clear and cloudy sky 808 

conditions for three cloud regimes (described in section 2.2 and 4.1): tropical convection (500 < 809 

-10 hPa/day, between 30˚S/N; top row), tropical subsidence (500 > 10 hPa/day; between 30˚S/N; 810 

middle row) and midlatitudes (all 500 between 30˚S/N and 50˚S/N; bottom row). The light grey 811 

and dark grey shading correspond to the maximum uncertainty estimates – i.e., the square root of 812 

the sum of square uncertainties – computed from all parameters and cloud parameters only, 813 

respectively. Solid and dashed lines designate to positive and negative perturbations while the 814 

reddish, bluish and greenish colors correspond to liquid, ice and environmental parameters, 815 

respectively. See the legend and Table 1 for the exact parameter’s names and section 2.2 for more 816 

detail about the uncertainty analysis. Note that, in clear sky, the impact of environmental 817 

perturbations (i.e., humidity and temperature) on RHR are large whereas they do not have as much 818 

impact when a cloud is present, generating a smaller uncertainty. 819 
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FIGURE 2: Zonal profiles (x-axis, latitude [˚N]; y-axis, pressure [hPa]) of RHR maximum 821 

uncertainty estimates (K/day) derived from Table 1 perturbations, i.e., the square root of the sum 822 

of all square uncertainties. The top, middle and bottom row correspond to LW, SW and net 823 

radiation while the left, middle and right column correspond to all, clear and cloudy sky conditions, 824 

respectively. Note that the range is different for SW radiation. 825 

 826 

 827 

  828 
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FIGURE 3: Zonal profiles (x-axis, latitude [˚]; y-axis, height [km]) of Cloud Frequency (CF, %) 829 

a) as observed by CloudSat-CALIPSO (RL-Geoprof R04, 2007-2010 daytime and nighttime, 830 

monthly mean), b) as simulated by 5 GASS-YOTC models (2002-2005, monthly means), along 831 

with c) the standard deviation of the difference between the multimodel mean and the observations 832 

and d) the difference between the multimodel mean and the observations.  833 

 834 

 835 

 836 

  837 
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FIGURE 4: Profiles (y-axis, pressure [hPa]) of observed and modeled LW, SW and net RHR 838 

(from left to right; x-axis, K/day in all, clear and cloudy sky conditions (from top to bottom) for 839 

tropical convection, i.e., 500 < -10 hPa/day, between 30˚S/N. To facilitate the interpretation of 840 

cloudy sky RHR biases, the observed and modeled cloud fraction and IWC/LWC profiles are also 841 

shown in the top right corner (d). Note that there are no uncertainty estimates for the observed CF 842 

(2007-2010) and IWC/LWC (2010). Their modeled counterparts are averaged over a 4-year long 843 

time period (2002-2005) and the shadings correspond to the multimodel standard deviations. The 844 

2BFL observations (2007-2010) are represented in orange. Their uncertainty estimates are 845 

computed from the same data as in Fig. 2 but for the specific region and regime used here. The 846 

merged CCCM+2BFL observations (2007-2010) and its standard deviation are in purple. The 847 

multimodel mean and standard deviation (1991-2008) are shown in green. 848 

 849 
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FIGURE 5: Same as Fig. 4 but for tropical subsidence, i.e., 500 > 10 hPa/day, between 30˚S/N. 850 

 851 

 852 

  853 
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FIGURE 6: Same as Fig. 4 for midlatitudes, i.e., all 500 between 30˚S/N and 50˚S/N.  854 

 855 

 856 

  857 



 45 

FIGURE 7: Zonal profiles (x-axis, latitude [˚]; y-axis, pressure [hPa]) of annual mean RHR 858 

(K/day) for the 2BFL observations (left column, 2007-2010 daytime and nighttime, monthly files) 859 

for the multimodel mean (5 models, 1991-2008, middle column) and the multimodel mean bias 860 

(right column). The rows correspond to the LW, SW and net radiation from the top to the bottom. 861 

Horizontal black dashed lines separate the low- and mid-level clouds (680 hPa), and mid- and 862 

high-level clouds (440 hPa). The red and blue shading designate cooling and warming, 863 

respectively. To highlight significant model error estimates in Fig. 7-8-9, only biases larger than 864 

the observed maximum uncertainty estimates are shown (right columns). Note that the SW RHR 865 

(and bias) has a different range compared to the LW and net RHR.  866 

 867 
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FIGURE 8: Same as Fig. 7 for clear sky conditions.  870 

 871 

 872 
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FIGURE 9: Same as Fig. 7 for cloudy sky conditions (defined as all sky minus clear sky). 874 

 875 


